Presupuesto estadal

Solo disponible en BuenasTareas
  • Páginas : 6 (1394 palabras )
  • Descarga(s) : 0
  • Publicado : 9 de febrero de 2011
Leer documento completo
Vista previa del texto
Definición de Número racional

Es el que se puede expresar como cociente de dos números enteros. El término "racional" hace referencia a una "ración" o parte de un todo; el conjunto de los números racionales se designan con "Q" por "quotient" que significa "cociente" en varios idiomas europeos. El conjunto Qde los números racionales está compuesto por los números enteros y por losfraccionarios. Los números enteros son racionales, pues se pueden expresar como cociente de ellos mismos por la unidad: a = a/1. Los números racionales no enteros se llaman fraccionarios.

Se pueden sumar, restar, multiplicar y dividir (salvo por cero) y el resultado de todas esas operacionesentre dos números racionales es siempre otro número racional.

Así como en el conjunto Z de los números enteros cadanúmero tiene un siguiente (el siguiente al 7 es el 8, el siguiente al -5 es el -4), no pasa lo mismo con los racionales, pues entre cada dos números racionales existen infinitos números.

Los números racionales sirven para expresar medidas, ya que al comparar una cantidad con su unidad el resultado es, frecuentemente, fraccionario.

Operaciones con fracciones

ADICIÓN Y SUSTRACCIÓN:Procedemos según sea el caso de los denominadores. Cabe destacar que los enteros pueden ser positivos o negativos así que debe recordarse la Ley de los signos.

Signos iguales se suman y se coloca el mismo signo + + = + ; - - = -

Signos diferentes se restan y se coloca el signo del mayor + - = - ; - + = -

IGUAL DENOMINADOR:

Para sumar fracciones con igual denominador, se suman losdenominadores y se deja el mismo denominador.

En general:

[pic]

Ejemplo:

[pic]

DISTINTO DENOMINADOR:

Para esto de buscan dos fracciones equivalentes de los dados que tengan el mismo denominador, después se suman dichas fracciones equivalentes.

Método de las cruces:

El numerador de la primera fracción por el denominador de la segunda fracción, el numerador de la segunda fracción porel denominador de la primera fracción, luego el denominador de la primera fracción por el denominador de la segunda fracción.

a + c

b d

a x d + b x c

b x d

Siendo

b y d≠O

Ejemplo:

[pic]

En sentido amplio, se llama número racional a todo número que puede representarse como el cociente de dos enteros con denominador distinto de cero (una fracción común). El término«racional» alude a «ración» o «parte de un todo», y no al pensamiento o actitud racional.
Representación gráfica de las fracciones cuyo divisor es 4.
En sentido estricto, número racional es el conjunto de todas las fracciones equivalentes a una dada; de todas ellas, se toma como representante canónico de dicho número racional a la fracción irreducible, la de términos más sencillos.
Definimos un númeroracional como un decimal finito o infinito periódico (por ejemplo, el número decimal finito 0,75 es la representación decimal del número racional 3/4. El número decimal infinito periódico 0,333... es la representación decimal del número racional 1/3). El número racional permite resolver ecuaciones del tipo ax = b, cuando a y b son números enteros (con «a» distinto de cero).
El conjunto de losnúmeros racionales se denota por [pic], que significa «cociente» (Quotient en varios idiomas europeos). Este conjunto de números incluye a los números enteros y es un subconjunto de los números reales. Las fracciones equivalentes entre sí –número racional– son una clase de equivalencia, resultado de la aplicación de una relación de equivalencia al conjunto de números fraccionarios.
Los númerosracionales cumplen la propiedad arquimediana o de densidad, esto es, para cualquier pareja de números racionales existe otro número racional situado entre ellos, propiedad que no estaba presente en los números enteros, por lo que los números racionales son densos en la recta de los números reales.
Construcción de los números racionales
• Consideremos las parejas de números enteros [pic]donde...
tracking img