Problemas de aplicacion ecuaciones...

Solo disponible en BuenasTareas
  • Páginas : 4 (988 palabras )
  • Descarga(s) : 0
  • Publicado : 3 de enero de 2011
Leer documento completo
Vista previa del texto
OBJETIVO

ESTE TRABAJO TIENE COMO OBJETIVO PRINCIPAL EL APRENDER LA APLICACIÓN DE LAS DIFERENTES ECUACIONES, RESUELTAS POR UN SIN NUMERO DE MÉTODOS. PARA RESOLVER PROBLEMAS QUE SE NOS PRESENTANDÍA A DÍA EN LA COTIDIANIDAD DE NUESTRAS VIDAS.

PRACTICAR COMO SE RESUELVEN LAS DIFERENTES ECUACIONES COMO SON: LAS LINEALES, LAS CUADRÁTICAS, RADICALES, EXPONENCIALES ENTRE OTRAS.

APRENDER COMOSE DEBE PLANTEAR UNA ECUACIÓN

PROBLEMAS DE APLICACIÓN

5. Hallar dos números consecutivos cuya suma sea 17 y su producto 72.

10. Un fabricante de envases de lata desea construir una latacilíndrica de 20cm de altura y capacidad de 300cm cúbicos. Halar el radio de la lata.

15. El doble del cuadrado de un número excede en siete al quíntuple del número. ¿Cual es el número?

20. Lasuma de un numero entero con su reciproco es de 26/5 . Hallar el número.

25. Un librero compro cierto número de cuadernos por $10.000 pesos si hubiera comprado 20 cuadernos mas por el mismodinero, cada cuaderno le hubiera constado 150 pesos menos. ¿Cuantos cuadernos compro? ¿Cuanto le costo cada uno?

SOLUCIÓN

5) Hallar dos números consecutivos cuya suma sea 17 y su producto 72.SEA x EL NUMERO y SEA x+1 SU CONSECUTIVO

x+(x+1)=17 2x+1=17 2x+1-17=0 2x-16=0

(x)(x+1)=72 x^2+x=72 x^2+x-72=0

x^2+x-72=2x-16

x^2+x-2x-72+16=0x^2-x-56=0


SOLUCIÓN DE LA ECUACIÓN POR FACTORIZACIÓN

x^2-x-56=(x-8) (x+7)

x_1=(x-8)

x-8=0

x=8 x_2=(x+7)

x+7=0

x=-7

PRUEBA
x_1=8

8+(8+1)=17

8+9=17

17=17(8)(8+1)=72

(8)(9)=72

72=72 x_2=-7

-7+(-7+1)=17

-7+(-7+1)=17

-7-6=17

-13≠17

(-7)(-7+1)=72

(-7)(-6)=72

42≠72

RTA/ EL NUMERO ES EL 8 Y SU CONSECUTIVO ES EL 9

10) Un fabricante deenvases de lata desea construir una lata cilíndrica de 20cm de altura y capacidad de 300cm cúbicos. Halar el radio de la lata.

SEA x EL RADIO DE LA LATA



300= (3.1416)(〖x)〗^2(20)...
tracking img