Productos notables

Solo disponible en BuenasTareas
  • Páginas : 8 (1849 palabras )
  • Descarga(s) : 0
  • Publicado : 4 de diciembre de 2011
Leer documento completo
Vista previa del texto
1 Caso I - Factor común

Sacar el factor común es añadir la literal común de un polinomio, binomio o trinomio, con el menor exponente y el divisor común de sus coeficientes, y para sacar esto, hay una regla muy sencilla que dice: Cuadrado del primer término más o menos cuadrado del segundo por el primero más cuadrado del segundo, y no hay que olvidar, que los dos que son positivos igualesfuncionan como el primer término, sabiendo esto, será sumamente sencillo resolver los factores comunes.

1 Factor común monomio

Factor común por agrupación de términos

[pic]
[pic] y si solo si el polinomio es 0 y el tetranomio nos da x.

2 Factor común polinomio

3 Factor común polinomio

Primero hay que determinar el factor común de los coeficientes junto con el de las variables (la quetenga menor exponente). Se toma en cuenta aquí que el factor común no solo cuenta con un término, sino con dos.

un ejemplo:

[pic]

Se aprecia claramente que se está repitiendo el polinomio (x-y), entonces ese será el factor común. El otro factor será simplemente lo que queda del polinomio original, es decir:

[pic]

La respuesta es:

[pic]

En algunos casos se debe utilizar elnúmero 1, por ejemplo:

[pic]

Se puede utilizar como:

[pic]

Entonces la respuesta es:

[pic]

2 Caso II - Factor común por agrupación de términos

Para trabajar un polinomio por agrupación de términos, se debe tener en cuenta que son dos características las que se repiten. Se identifica porque es un número par de términos.

Un ejemplo numérico puede ser:

[pic]

entonces puedesagruparlos de la siguiente manera:

[pic]

Aplicamos el caso I (Factor común)

[pic]

[pic]

3 Caso III - Trinomio Cuadrado Perfecto

Se identifica por tener tres términos, de los cuales dos tienen raíces cuadradas exactas, y el restante equivale al doble producto de las raíces del primero por el segundo. Para solucionar un Trinomio Cuadrado Perfecto debemos reordenar los términosdejando de primero y de tercero los términos que tengan raíz cuadrada, luego extraemos la raíz cuadrada del primer y tercer término y los escribimos en un paréntesis, separándolos por el signo que acompaña al segundo término, al cerrar el paréntesis elevamos todo el binomio al cuadrado.

[pic]
[pic]

Ejemplo 1:

[pic]

Ejemplo 2:

[pic]

Ejemplo 3:

[pic]

Ejemplo 4:

[pic]Organizando los términos tenemos

[pic]

Extrayendo la raíz cuadrada del primer y último término y agrupándolos en un paréntesis separados por el signo del segundo término y elevando al cuadrado nos queda:

[pic]

Al verificar que el doble producto del primero por el segundo término es -20xy determinamos que es correcta la solución. De no ser así, esta solución no aplicaría.

4 Caso IV -Diferencia de cuadrados

Se identifica por tener dos términos elevados al cuadrado y unidos por el signo menos. Se resuelve por medio de dos paréntesis, (parecido a los productos de la forma (a-b)(a+b), uno negativo y otro positivo.

[pic]

O en una forma más general para exponentes pares:

[pic]

Y utilizando una productoria podemos definir una factorización para cualquier exponente, elresultado nos da r+1 factores.

[pic]

Ejemplo 1:

[pic]

Ejemplo 2: Supongamos cualquier r, r=2 para este ejemplo.

[pic]
[pic]

[pic]

Y utilizando una productoria podemos definir una factorización para cualquier exponente, el resultado nos da r+1 factores.

[pic]

Ejemplo 1:

[pic]

Ejemplo 2: Supongamos cualquier r, r=2 para este ejemplo.

[pic]
[pic]

[pic]

Lafactorización de la diferencia o resta de cuadrados consiste en obtener las raíz cuadrada de cada término y representar estas como el producto de binomios conjugados.

5 Caso V - Trinomio cuadrado perfecto por adición y sustracción

Se identifica por tener tres términos, dos de ellos son cuadrados perfectos, pero el restante hay que completarlo mediante la suma para que sea el doble producto de...
tracking img