Regresionlineal

Solo disponible en BuenasTareas
  • Páginas : 10 (2457 palabras )
  • Descarga(s) : 0
  • Publicado : 13 de junio de 2010
Leer documento completo
Vista previa del texto
Tema 2 Análisis de regresión lineal
2.1. Los problemas de la causalidad en Ciencias sociales
2.2. El modelo de la regresión lineal múltiple
2.3 Supuestos del modelo de regresión
2.4 SPSS (regresión múltiple)

Análisis de regresión lineal

2.1. Los problemas de la causalidad en Ciencias sociales

Por el momento no existe técnica que sea capaz de probar los enunciados causalesempíricamente. Lo que se puede hacer es comprobar si las inferencias causales que formula un investigador son consistentes con los datos disponibles.
Definiremos modelo como conjunto de relaciones que se usan para representar de forma sencilla una porción de la realidad empírica.
Cuando un investigador elabora un modelo y posteriormente se comprueba que el modelo no se ajusta a los datos, se pueden tomardos decisiones: modificar el modelo o abandonarlo. Pero si el modelo es consistente con los datos, esto nunca prueba los efectos causales. La consistencia entre los datos y el modelo no implica la consistencia entre el modelo y la realidad. Lo único que se puede afirmar es que los supuestos del investigador no son contradictorios y por lo tanto pueden ser válidos. Pero el "ser válidos", no quieredecir que sean la única explicación del fenómeno objeto de estudio, ya que es posible que otros modelos también se adapten a los mismos datos.
Asociación no implica causalidad: Que exista una fuerte asociación entre dos variables no es suficiente para sacar conclusiones sobre las relaciones causa - efecto.
Ejemplo: existe fuerte correlación entre el número de bomberos que actúan en un incendioy la importancia del daño ocasionado por el mismo.

2.2. El modelo de la regresión lineal múltiple

El objetivo del análisis de la regresión lineal es analizar un modelo que pretende explicar el comportamiento de una variable (Variable endógena, explicada o dependiente), que denotaremos por Y, utilizando la información proporcionada por los valores tomados por un conjunto de variables(explicativas, exógenas o independientes), que denotaremos por X1 , X2 , ....., X n
Las variables del modelo de regresión deben ser cuantitativas. Pero dada la robustez[1] de la regresión es frecuente encontrar incluidas en el modelo como variables independientes a variables ordinales e incluso nominales transformadas en variables ficticias. Pero la variable dependiente debe ser cuantitativa. Para unavariable dependiente binaria de emplea la regresión logística.
El modelo lineal viene dado por la ecuación lineal:

Y = b0 + b1 X1 + b2 X2 + ... b k X k + u

Los coeficientes (parámetros) b1 , b2 , ... , b k denotan la magnitud del efecto de las variables explicativas (exógenas o independientes), esto es, representan los pesos de la regresión o de la combinación lineal de laspredictoras X1 , X2 , ... X k sobre la variable explicada (endógena o dependiente) Y. El coeficiente b0 se denomina término constante (o independiente) del modelo. Y al término u se le llama término de error del modelo o componente de Y no explicada por las variables predictoras.
Si disponemos de T observaciones para cada variable, el modelo de expresa así:

Y t = b0 + b1 X1 t + b2 X2 t + ... bk X k t + u t t = 1, 2 , 3 ,.... T

El problema fundamental que se aborda es el siguiente: suponiendo que la relación entre la variable Y y el conjunto de variables X1 , X2 , ... X k es como se ha descrito en el modelo, y que se dispone de un conjunto de T observaciones para cada una de las variables ¿cómo pueden asignarse valores numéricos a los parámetros b0 , b1 , b2 , ... b kbasándonos en la información muestral?.
Estos valores son la estimación de los parámetros llamados coeficientes de regresión. Representan las unidades de cambio en la variable dependiente por unidad de cambio en la variable independiente correspondiente. En el caso de que sólo haya una variable dependiente se llega a la ecuación de una recta donde b0 es la ordenada en el origen y b1 la...
tracking img