Segundo momento de area

Solo disponible en BuenasTareas
  • Páginas : 9 (2186 palabras )
  • Descarga(s) : 7
  • Publicado : 18 de agosto de 2010
Leer documento completo
Vista previa del texto
Segundo momento de área
En ingeniería estructural, el segundo momento de área, también denominado segundo momento de inercia o momento de inercia de área, es una propiedad geométrica de la sección transversal de elementos estructurales. Físicamente el segundo momento de inercia está relacionado con las tensiones y deformaciones máximas que aparecen por flexión en un elemento estructural y, portanto, junto con las propiedades del material determina la resistencia máxima de un elemento estructural bajo flexión.
El segundo momento de área es una magnitud cuyas dimensiones son longitud a la cuarta potencia (que no debe ser confundida con el concepto físico relacionado de inercia rotacional cuyas unidades son masa por longitud al cuadrado). Para evitar confusiones, algunos ingenierosdenominan "momento de inercia de masa" al momento con unidades de masa descrito en este artículo.
* |
SEGUNDO MOMENTO O MOMENTO DE INERCIA DE UN ÁREA.
Por ejemplo, considérese una viga de sección transversal uniforme la cual está sometida a dos pares iguales y opuestos que están aplicados en cada uno de los extremos de la viga. Se dice que una viga en tales condiciones está en flexión pura y enla mecánica de materiales se demuestra que en las fuerzas internas en cualquier sección de la viga son fuerzas distribuidas cuyas magnitudes varían linealmente con la distancia y que hay entre el elemento de área y un eje que pasa a través del centroide de la sección. Dicho eje representado por x como en la figura 9.1, se conoce como el eje neutro. Las fuerzas en un lado del eje neutro son fuerzasde compresión, mientras que las fuerzas en el otro lado son fuerzas de tensión; sobre el propio eje neutro de las fuerzas son iguales a cero.
La magnitud de la resultante R de las fuerzas elementales F que actúan sobre toda la sección está dada por la fórmula
La última integral obtenida se conoce como el primer momento Qx de la sección con respecto del eje x; dicha cantidad es igual a YA y porlo tanto, es igual a cero puesto que el centroide de la sección está localizado sobre el eje x. Por consiguiente el sistema de fuerzas F se reduce a un par. La magnitud m de dicho par debe ser igual a la suma de los momentos Mx = yF = Ky2 A de las fuerzas elementales. Integrando sobre toda la sección se obtiene:
La última integral se conoce como segundo momento o momento de inercia, de la secciónde la viga con respecto del eje x y se representa con Ix. El segundo momento se obtiene multiplicando cada elemento de área dA por el cuadrado de su distancia desde el eje x e integrándolo sobre la sección de la viga. Como cada producto y2 dA es positivo, sin importar el signo de y, o cero, la integral Ix siempre será positiva. Otro ejemplo de un segundo momento, o momento de inercia de un árealo proporciona el siguiente problema de hidrostática:
Una compuerta circular vertical utilizada para cerrar el escurridero de un gran depósito está sumergida bajo agua como muestra la figura. ¿cuál es la resultante de las fuerzas ejercidas por el agua sobre la compuerta y cual es el momento de la resultante con respecto de la línea de intersección del plano de la compuerta y la superficie del agua( eje x)?.
Si la compuerta fuera rectangular, la resultante de las fuerzas de presión se podría determinar a partir de la curva de presión tal y como se hizo en los capítulos anteriores. Sin embargo puesto que la compuerta es circular, se debe utilizar un método más general. Representado por y la profundidad de un elemento de área A y por el ángulo gamma al peso específico del agua, la presiónen el elemento es p = y y la magnitud de la fuerza elemental ejercida sobre A es F = pA =yA.
Por lo tanto, la magnitud de la resultante de las fuerzas elementales está dada por:
Y puede obtenerse el primer momento QX = ydA del área de la compuerta con respecto del eje x. El momento Mx de la resultante debe ser igual a la suma de los momentos Mx = yF = y2 A de las fuerzas elementales. Integrando...
tracking img