Simetría y cónicas en arquitectura

Solo disponible en BuenasTareas
  • Páginas : 8 (1811 palabras )
  • Descarga(s) : 0
  • Publicado : 14 de febrero de 2012
Leer documento completo
Vista previa del texto
SIMETRÍA Y CÓNICAS EN ARQUITECTURA


SIMETRÍA

1. Definición:

La simetría es un rasgo característico de formas geométricas, sistemas, ecuaciones y otros objetos materiales, o entidades abstractas, relacionada con su invariancia bajo ciertas transformaciones, movimientos o intercambios.
En la geometría 2D las clases principales de simetría de interés son las que conciernen alas isometrías de un espacio euclídeo: traslaciones, rotaciones, reflexiones y reflexiones que se deslizan.
La simetría también se encuentra en organismos vivos.



2. Historia:
Los filósofos y matemáticos griegos la descubrieron en su propio espacio, en la perpendicularidad entre la vertical y el horizonte; pero los griegos fueron los primeros en estudiarla en su esencia, junto con laaritmética y la geometría. Los pitagóricos, por ejemplo, veneraban la relación entre la armonía musical y las matemáticas que el propio Pitágoras de Samos (aprox. 582-500 a.C.) les había mostrado con las notas de cuerdas de longitudes fraccionadas, y el mismo Pitágoras usó simples conceptos de simetría plana para demostrar su famoso teorema sobre la arena.
Los árabes mostraron su dominio de lasimetría en lugares mágicos como la Alhambra de Granada. Sus paredes son una verdadera sinfonía de cómo nuestro espacio (plano en ese caso) se deja llenar con un número limitado de combinaciones de simetría. Ejes de orden 2, 4, 3 o 6 (pero no de orden 5 por ejemplo, que no son compatibles con traslaciones periódicas), centros de inversión, traslaciones y planos de simetría se combinan para darlugar a los 17 grupos espaciales planos, es decir, a las únicas 17 formas posibles de llenar todo el espacio infinito de un plano bidimensional con elementos relacionados por simetría (en 3 dimensiones hay 230 grupos espaciales posibles). 
 
Pero la simetría no es un mero juego matemático ni un artefacto del entendimiento humano. Para su sorpresa, el hombre la ha descubierto en el mundo natural,impuesta por la propia naturaleza tridimensional del espacio en el que vive. Cuando el primer estudioso de las formas de los cristales minerales se dio cuenta de que cualquier cristal de un mismo mineral presenta ángulos constantes entre sus diversas caras debió de sentir con toda razón que la naturaleza le estaba hablando palabras secretas. Esa ley de la constancia de los ángulos es en efecto unaconsecuencia, una manifestación de la simetría con la que se ordenan los átomos o moléculas que forman el cristal. Los cristalógrafos sistematizaron todas las combinaciones de simetría posibles en nuestro espacio de tres dimensiones y pudieron clasificar todas las sustancias cristalinas (es decir aquellas que presentan orden atómico a largo alcance) de acuerdo con estas combinaciones. Poco podíanimaginar que su trabajo sería una de las piezas necesarias para que siglos después otros científicos llegasen a desentrañar, mediante la ayuda de técnicas de difracción de rayos X, la estructura cristalina y molecular de todo tipo de sustancias, naturales o sintéticas, minerales, fármacos, proteínas e incluso la estructura en forma de simétrica doble hélice del ADN.
3. Enfoques de lasimetría:

a) Simetría en geometría:
Cuando hablamos de objetos físicos o elementos geométricos el concepto de simetría está asociado a transformaciones geométricas tales como las rotaciones, las reflexiones o las traslaciones. Dos simetrías sencillas son la simetría axial y la simetría central. Así se dice que un objeto presenta:
* Simetría esférica si existe simetría bajo algún grupo derotaciones, matemáticamente.
* Simetría cilíndrica o simetría axial si existe un eje tal que los giros alrededor de él no conducen a cambios de posición en el espacio, matemáticamente.
* Simetría reflectiva o simetría especular que se caracteriza por la existencia de un único plano. En dos dimensiones tiene un eje de simetría y en tres dimensiones tiene un plano. El eje de simetría de una...
tracking img