Sistema de ecucaciones de primer grado con respuestas. sacado de www.hverdugo.cl

Solo disponible en BuenasTareas
  • Páginas : 8 (1773 palabras )
  • Descarga(s) : 12
  • Publicado : 17 de junio de 2010
Leer documento completo
Vista previa del texto
SISTEMAS DE ECUACIONES LINEALES
(entre paréntesis los resultados sólo números impares) A) Resuelva por el método de igualación: 3x + 2y = 21 5x - y = 22 (5,3) x + 2y = 0 5x - y = 11 x + y = 11 2x - y = 1 17.4x + 3y = 3 x + 2y = -8 x + 3y = 4 2x - 9y = 3 Resuelve por el método de determinantes: 4x + 5y = 3 6x - 10y = 1 3x + y/6 = 4 5x - y/3 = 3 3(x - 2) = 2y 2(y + 5) = 7x (1, -3/2) 4(x + 2) = -6y3(y + 2x) = 0 y(x - 3) - x(y - 2) = 14 x(y + 9) - y(x - 6) = -54 (-2,-6) 3x/2 + y = 12 x - 2y/3 = 0 Resuelva. En algunos casos conviene usar variables auxiliares, esté atento. Use el método que más le agrade o que más le acomode. x+y=a x-y=b x+y=a-b x-y=a+b x/b + y = 2a x/a - y = b - a

(2, -5)

1.-

18.-

2.-

D)

3.-

19.(4,7) 20.-

(1/2, 1/5)

4.-

14x - 11y = -29 13y - 8x= 30 x - 2y = 3 4x + 3y = 45 (9,3) 6y - x = 16 x = 5y - 13 Resuelva por el método de sustitución: x + y = -3 2y = x + 15 3x + 3y = 9 2x - y = 12 2x + 3y = -7 x - 3y = -17 4x + 3y = 0 x-y=7 x - 2y = -2 2x + y = 16 5x - y = 16 x + 3y = 0 Resuelve por el método de reducción: 3x + 5y = 2 4x + 2y = -6 2x + y = 13 2y = 4x + 10 5x - y = -7 x + 3y = -11 4x + 5y = 5 -10y - 4x = -7

5.-

21.-

6.-22.-

B)

23.-

7.-

(-7,4)

24.-

8.-

E)

9.-

(-8,3)

10.-

25.-

((a+b)/2,(a-b)/2)

11.-

(6,4)

26.-

12.-

27.-

(ab, a)

C)

28.-

(x + y + 5)/(x - y + 3) = 1/ 2 x+y=1 (x + 2y - 4)/(x - y +5) = -5/7 3x - 2y = 5 (51/31, -1/31) (x + 1)/(y - 2) = 6 (x - 3)/(y + 5) = ¼ 3x + 2y = 5 x-y=0 ax + y = a x - by = 1

13.-

(-1,1)

29.-

14.-

30.-15.-

(-2,-3)

31.-

(1,1)

16.-

32.-

Hernán Verdugo Fabiani www.hverdugo.cl

1

33.-

3x + y = 5 x-y=3 ax + by = a + b ax - by = a - b ax + y = b x + ay = b 2x/3 + y/5 = 3 x - y = -2 3/x + 2/y = 2 9/x - 4/y = 1 2(x + 3) - 3y = 6 9x - 2(y + 4) = 15

(2, -1)

53.-

3 √ x + 5 - 2√ y - 4 = 7 √x+5 +√y-4 =4

(4,5)

34.-

54.-

35.-

√x+y + √x-y =5 √x+y - √x-y =1a/x + b/y = 2 3a/x - 2b/y = 1 3/(x-4) + 4/(y-1) = 3 9/(x-4) - 2/(y-1) = 2 x + 2y = -1 x+y+z=2 x - 2y + 3z = 5 (a,b)

(b/(a+1),b/(a+1))

55.-

36.-

56.(3,2)

37.-

57.-

38.-

(-

7,3,6) 58.(1,-2) 59.x + y - z = -1 2x + y + z = 10 x-y+z=3 2x + 3z = 21 4y - z = 3 3x + 2z = 19 x+y+z=2 x - y + z = 10 y - x + z = 10 x + 2y - z = 6 2x + 8y - z = 63 -3x + y + 5z = 76 x-y-1=0 y+z-1=0x-z-1=0 4x + 3y + 2z = 25 3x + 2y + 5z = 32 2x + 3y + 4z = 29 6x - y - 8 = 0 4y - z - 3 = 0 3x + 2z - 19 = 0

39.-

5(x - 2) + 4(y = -13 2x - 3(y + 6) = -10 6(x + 4) - 3y = 18 5x + 2(y + 8) = 20 1/x - 2/y = 2 5/x + 6/y = 2 2a/x + 3b/y = -1 a2/x + b/y = a + 1

40.-

41.-

(3,2,5)

(1,-2)

60.-

42.-

43.-

(5x + 3)/2 - (5y - 6)/3 x - 1 (5x - 4)/3 - (3y +1)/2 = y - 1 (36/7, 15/7) (3x-2)/2 + (2y + 3)/3 = x + y (5x - 4)/3 - (y - 1)/2 = y - x (4x -3y -19)/4 - (x -2y + 9)/6 = x (5x - 4y +21) - (3x -2y - 2)/9 = y (-2084/97, -541/117) ax + by = a + b ax - by = a - b 3x + 2y = 8 6x + 4y =0 ax + by = a bx + ay = b (∅ )

61.-

(9,8,9)

44.-

62.-

45.-

63.-

(2,3,4)

46.-

64.-

47.-

65.-

48.-

ax + by + z = a by - az = 0 x+y=1 x + 5y + 3x = 9 x + y + 6z= 9 2x - y + 18z = 17 2x + y + z = 4 x+y=0 x + 3z = 4 2x - y = 1 y-z=0 x+z=3

(1, 0, 0)

66.49.3(x + y) + 2(x - y) = 8 10x + 2y = 16 (∞ sol.) 4x/5 + 2y/3 = 6 x-y=1 2x/3y = 1 / 2 8x - 6y = 0 1/x + 2/y = 1 3/x - 1/y = 5/4 (∞ sol.) 67.-

50.-

(4,-4,0)

51.-

68.-

52.-

Hernán Verdugo Fabiani www.hverdugo.cl

2

69.-

x+y+z=3 x-y=0 2y - z = 1 (1,1,1) x+y+z=6 2x + y + z = 9x+y-z=4 Determina x – y, si ax + by = 2a + b ax - 2by = 2a - 2b (1) Determina xy, si 3x + 5y = 26 y/x = 2 Determina x/y, si 2/x - 1/y = 0 6/x + 3/y = 6

86.-

Determine dos números cuya diferencia y cuociente sean 5. La suma de dos números es 28 y el duplo de su diferencia es igual al mayor menos 2. ¿Cuáles son dichos números? (18, 10) Un muchacho dice: "tengo tantos hermanos como hermanas"....
tracking img