Sistemas numericos

Solo disponible en BuenasTareas
  • Páginas : 14 (3340 palabras )
  • Descarga(s) : 0
  • Publicado : 23 de enero de 2011
Leer documento completo
Vista previa del texto
SISTEMAS DE NUMERACIÓN
binario, octal y hexadecimal

Sistemas de numeración

Sistema de numeración decimal

Sistema de numeración binario

Conversión entre números decimales y binarios
El tamaño de las cifras binarias
Conversión de binario a decimal

Sistema de numeración octal

Conversión de un número decimal a octal

Conversión octal a decimal

Sistema de numeraciónhexadecimal

Conversión de números binarios a octales y viceversa

Conversión de números binarios a hexadecimales y viceversa

Sistemas de numeración

Un sistema de numeración es un conjunto de símbolos y reglas que permi­ten representar datos numéricos. Los sistemas de numeración actuales son sistemas posicionales, que se caracterizan porque un símbo­lo tiene distinto valor según la posición queocupa en la cifra.

1.
Sistema de numeración decimal:

El sistema de numeración que utiliza­mos habitualmente es el decimal, que se compone de diez símbolos o dígi­tos (0, 1, 2, 3, 4, 5, 6, 7, 8 y 9) a los que otorga un valor dependiendo de la posición que ocupen en la cifra: unidades, decenas, centenas, millares, etc.

El valor de cada dígito está asociado al de una potencia debase 10, número que coincide con la cantidad de símbolos o dígitos del sistema decimal, y un exponente igual a la posición que ocupa el dígito menos uno, contando desde la de­recha.

En el sistema decimal el número 528, por ejemplo, significa:

5 centenas + 2 decenas + 8 unidades, es decir:

5*102 + 2*101 + 8*100 o, lo que es lo mismo:

500 + 20 + 8 = 528

En el caso de números condecimales, la situación es análoga aunque, en este caso, algunos exponentes de las potencias serán negativos, concreta­mente el de los dígitos colocados a la derecha del separador decimal. Por ejemplo, el número 8245,97 se calcularía como:

8 millares + 2 centenas + 4 decenas + 5 unidades + 9 décimos + 7 céntimos

8*103 + 2*102 + 4*101 + 5*100 + 9*10-1 + 7*10-2, es decir:

8000 + 200 + 40 + 5 + 0,9+ 0,07 = 8245,97

Sistema de numeración binario.

El sistema de numeración binario utiliza sólo dos dígitos, el cero (0) y el uno (1).

En una cifra binaria, cada dígito tiene distinto valor dependiendo de la posición que ocupe. El valor de cada posición es el de una potencia de base 2, elevada a un exponente igual a la posición del dígito menos uno. Se puede observar que, tal y comoocurría con el sistema decimal, la base de la potencia coincide con la cantidad de dígitos utilizados (2) para representar los números.

De acuerdo con estas reglas, el número binario 1011 tiene un valor que se calcula así:

1*23 + 0*22 + 1*21 + 1*20 , es decir:

8 + 0 + 2 + 1 = 11

y para expresar que ambas cifras describen la misma cantidad lo escribimos así:

10112 = 1110

2.Conversión entre números decimales y binarios

Convertir un número decimal al sistema binario es muy sencillo: basta con realizar divisiones sucesivas por 2 y escribir los restos obtenidos en cada división en orden inverso al que han sido obtenidos.

Por ejemplo, para convertir al sistema binario el número 7710 haremos una serie de divisiones que arrojarán los restos siguientes:

77 : 2 = 38Resto: 1

38 : 2 = 19 Resto: 0

19 : 2 = 9 Resto: 1

9 : 2 = 4 Resto: 1

4 : 2 = 2 Resto: 0

2 : 2 = 1 Resto: 0

1 : 2 = 0 Resto: 1

y, tomando los restos en orden inverso obtenemos la cifra binaria:

7710 = 10011012

Ejercicio 1:

Expresa, en código binario, los números decimales siguientes: 191, 25, 67, 99, 135, 276

1.
El tamaño de las cifras binarias

Lacantidad de dígitos necesarios para representar un número en el sistema binario es mayor que en el sistema decimal. En el ejemplo del párrafo anterior, para representar el número 77, que en el sistema decimal está compuesto tan sólo por dos dígitos, han hecho falta siete dígitos en binario.

Para representar números grandes harán falta muchos más dígitos. Por ejemplo, para representar números...
tracking img