Tareas matematicas discretas

Solo disponible en BuenasTareas
  • Páginas : 3 (725 palabras )
  • Descarga(s) : 0
  • Publicado : 16 de febrero de 2012
Leer documento completo
Vista previa del texto
1. P( ): Si es un entero positivo mayor que 1, entonces > . Podemos expresar esta proposición de la forma p q, siendo p: es un entero positivo mayor que 1. q: > . Por el método de la inducciónmatemática tomamos como caso base, P(1). La proposición seria p(1): 1 es un entero positivo mayor que 1. (FALSO) Por lo tanto P(0) y P( ) tambien lo seran. En nuestra ejercicio debes demostrar P(0), por lotanto remplazamos en nuestras propociciones: p: 0 es un entero positivo mayor que 1. (FALSO) P(0) Por lo tanto usando el metodo de la demostracion directa, p q donde p es Falsa, q tambien es Falsa.P(0) es una proposicion Falsa. 2. Demostracion Directa: p: es un número par. (Hipotesis) q: es un número par. (Tesis) p q

Demostramos que , tiene la misma forma que demostramos esta propocicion.Demostracion Indirecta: p: es un número par. (Hipotesis) q: es un número par. (Tesis) Es un número impar. (Hipótesis) Es un número impar. (Tesis)

por lo tanto

Demostramos que , tiene la misma formaque lo tanto demostramos esta propocicion.

por

2

Demostracion al absurdo: llamemos ese número par "a" y notemos que a es de la forma 2k (k=1,2,3,...) o sea a=2k , llamemos esta ecuación (1)notemos que 2k es par...... y supongamos que su cuadrado no es par entonces a² es impar o sea a² es de la forma 2t+1 (t=1,2,3...) o sea a²=2t+1 llamemos esta ecuación (2) notemos que 2t+1 siempre va aser impar. Al sustituir (1) en (2) me quedaría: (2k)²=2t+1 al resolver el producto notable me quedaría 4k²-1=2t o sea 2(2k²)+(-1)=2t llamemos p=2k² o sea 2p+(-1)=2t Pero es obvio que esta igualdadnunca se va a cumplir ya que 2p+(-1) es impar para cualquier p (p=1,2,3,....) y 2t es par para cualquier t (t=1,2,3,....) entonces llegamos a un absurdo por lo tanto, a² es par cuando a es par. 3. Si esun entero y es impar entonces p: es un entero . (Hipótesis) q: es impar.(hipótesis) r: es un entero.(tesis) es par.



es impar.”

Por medio de algunas operaciones algebraicas logramos...
tracking img