Tda2822

Solo disponible en BuenasTareas
  • Páginas : 5 (1044 palabras )
  • Descarga(s) : 0
  • Publicado : 15 de mayo de 2011
Leer documento completo
Vista previa del texto
TDA2822M
DUAL LOW-VOLTAGE POWER AMPLIFIER

. . . .

SUPPLY VOLTAGE DOWN TO 1.8V LOW CROSSOVER DISTORSION LOW QUIESCENT CURRENT BRIDGE OR STEREO CONFIGURATION

MINIDIP ORDERING NUMBER : TDA2822M

DESCRIPTION The TDA2822M is a monolithic integrated circuit in 8 lead Minidip package. It is intended for use as dual audio power amplifier in portable cassette players and radios. PIN CONNECTION(Top view)

March 1995

1/11

TDA2822M
SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS
Symbol Vs Io Ptot Tstg, Tj Supply Voltage Peak Output Current Total Power Dissipation at Tamb = 50 °C at Tcase = 50 °C Storage and Junction Temperature Parameter Value 15 1 1 1.4 – 40, + 150 Unit V A W W °C

THERMAL DATA
Symbol Rth j-amb Rth j-case Parameter Thermal Resistance Junction-ambient ThermalResistance Junction-pin (4) Max. Max. Value 100 70 Unit °C/W °C/W

2/11

TDA2822M
ELECTRICAL CHARACTERISTICS (VS = 6V, Tamb = 25oC, unless otherwise specified)
Symbol Vs Vo Id Ib Po Parameter Supply Voltage Quiescent Output Voltage Vs = 3V Quiescent Drain Current Input Bias Current Output Power (each channel) (f = 1kHz, d = 10%) Test Conditions Min. 1.8 2.7 1.2 6 100 VS = 9V VS = 6V VS =4.5V VS = 3V VS = 2V VS = 6V VS = 9V VS = 6V VS = 6V VS = 4.5V VS = 3V Po = 40mW Po = 75mW Po = 150mW 300 120 60 20 5 220 1000 380 650 320 110 0.2 0.2 0.2 39 Typ. Max. 15 Unit V V V mA nA mW STEREO (test circuit of Figure 1)

9

RL = 32Ω

90 15 170 300 450

RL = 16Ω RL = 8Ω RL = 4Ω d Distortion (f = 1kHz) RL = 32Ω RL = 16Ω RL = 8Ω f = 1kHz f = 1kHz Rs = 10kΩ

Gv ∆Gv Ri eN SVR Cs Vs Id VosIb Po

Closed Loop Voltage Gain Channel Balance Input Resistance Total Input Noise Supply Voltage Rejection Channel Separation Supply Voltage Quiescent Drain Current Output Offset Voltage (between the outputs) Input Bias Current Output Power (f = 1kHz, d = 10%)

36 100

41 ±1

B = Curve A B = 22Hz to 22kHz f = 100Hz, C1 = C2 = 100µF f = 1kHz

24

2 2.5 30 50 15 9 ± 50

% % % dB dBkΩ µV µV dB dB V mA mV nA mW

BRIDGE (test circuit of Figure 2) 1.8 RL = ∞ RL = 8Ω 6

100 RL = 32Ω VS = 9V VS = 6V VS = 4.5V VS = 3V VS = 2V VS = 9V RL = 16Ω VS = 6V VS = 3V VS = 6V RL = 8Ω VS = 4.5V VS = 3V VS = 4.5V RL = 4Ω VS = 3V VS = 2V Po = 0.5W, RL = 8Ω, f = 1kHz f = 1kHz f = 1kHz Rs = 10kΩ B = Curve A B = 22Hz to 22kHz f = 100Hz RL = 8Ω, Po = 1W 1000 400 200 65 8 2000 800 120 1350 700 2201000 350 80 0.2 39 2.5 3 40 120

320 50

900

200

d Gv Ri eN SVR B

Distortion Closed Loop Voltage Gain Input Resistance Total Input Noise Supply Voltage Rejection Power Bandwidth (–3dB)

100

% dB kΩ µV µV dB kHz

3/11

TDA2822M
Figure 1 : Test Circuit (Stereo)

Figure 2 : Test Circuit (Bridge)

Figure 3 :

P.C. Board and Components Layout of the Circuit of Figure 1Figure 4 :

P.C. Board and Components Layout of the Circuit of Figure 2

4/11

TDA2822M
Figure 5 : Quiescent Current versus Supply Voltage Figure 6 : Supply Voltage Rejection versus Frequency

Figure 7 :

Output Power versus Supply Voltage (THD = 10%, f = 1kHz Stereo)

Figure 8 :

Distorsion versus Output Power (Stereo)

Figure 9 :

Distorsion versus Output Power (Stereo)Figure 10 : Output Power versus Supply Voltage (Bridge)

5/11

TDA2822M
Figure 11 : Distorsion versus Output Power (Bridge) Figure 12 : Total Power Dissipation versus Output Power (Bridge)

Figure 13 : Total Power Dissipation versus Output Power (Bridge)

Figure 14 : Total Power Dissipation versus Output Power (Bridge)

Figure 15 : Total Power Dissipation versus Output Power (Bridge)6/11

TDA2822M
Figure 16 : Typical Application in Portable Players

Figure 17 : Application in Portable Radio Receivers

7/11

TDA2822M
Figure 18 : Portable Radio Cassette Players

Type TDA 7220 TDA 7211A TEA 1330 TDA 7282 TDA 2822M

Supply Voltage 1.5 V to 6 V 1.2 V to 6 V 3 V to 15 V 1.5 V to 6 V 1.8 V to 15 V

Figure 19 : Portable Stereo Radios

Type TDA 7220 TDA 7211A...
tracking img