Tranformaciones lineales

Solo disponible en BuenasTareas
  • Páginas : 6 (1325 palabras )
  • Descarga(s) : 0
  • Publicado : 30 de noviembre de 2011
Leer documento completo
Vista previa del texto
!

& ! ! !" ' "# ! ! !" "+ $ " "#- '" ! "

!

! "

" ! "#! $ & ' !" " " ( )!$ ' !" " " ($ &) ! " " & $ ! ! " $ $ "

!

" " " %

"

" ! " "

%" $ " !*

" , ! ! * " !" * '"

" ' " ". ! " "$ ,

# ! ( ! " & !" $/ " "

"

0, 3!.

! + ", " 2 "-"4( ' 5 * / / - ) !" , !" ' !" $ -" " $ -" !" , 6, 1 0 " ! %" $ 1 # $ * ! " 6&7 #" ! ! !" ' !" " " ' $ %" $ " " !( " $/ " " $ 2* )! !% " " 7, 1 8 "5 ' " " " " $ "&* # . !" "$ " ! " " ! , "$" & : $" :" !5 # ! !, ! (: &' 4* # 5 " !5 # ! ! 5 " $" "$" $ " ! ( "

"

1

"$ ' 3 ' & "#

" " " $ " $ ! ! & $# !!" !" * ! " " '

! ! 4& 2

" " ! ( ! $ %" $ " ! ! & , ! )! $ ! 1 7 ! & ( $/ " ! ! !" ' !" " " $ " ! " "#! $ ! , "# " " + ! " !" ! 5" " ! ! $ "9 "#! $ ( :

! " " - " % " " - " % " .% 3 "$ " ! "$ " with(), "! % ! * !!5 ! , 5 ! 1 ;

.% " " *

> restart; with(linalg):
Warning, the protected names norm and trace have been redefined and unprotected

" ( ! " * >

$" * * ! !5 " ! ! $ "9 ! * , " " $ : % ' 5 "

" $ "

" !" "$ " * * . ' $" ) ! !5 # ! ! & - $" ! !5 ! " ! & !

,

#$ %
%

&

'()
vector() * " $" $ ! !

' " $ ! " ! " 5 %" $ ; > restart: with(linalg): u:=vector([1,2,3,4]);Warning, the protected names norm and trace have been redefined and unprotected

;< = 0( 6( 7( 8 > " ' " vector() ! 5 > v:=vector(5); " * % $" ' " % ' "
8

&" "$#

,

$

$ !

!

;< " 5 / "
?

&3 0 ,, ?( = > 4 $" ! "$# ', . " $" '( ' $"

"

?

&!

' " 5 / > evalm(v);

$ % ' > w1:=[1,2,3,4,5,6]; "

= 0( 6( ! & ! %

7(

8(

?>

!"

$

"$"

!

;< = 0( 6( 7( 8(?( @ > ! " "$" $ 2 % ! " "! $ > w2:=matrix(1,3,[a,b,c]); w3:=matrix(3,1,[d,e,f]); ;< = ;< $ :" "$ " ! !2 ! " " !" ' " " ' " ! ( " " ! $" "!" " !" " " $ " ( ' $" "!" !" " " $ $ #! ( " !" * "!" "$ $" !" "$ " basis() & dotprod() 3 )! $" !" $ ! $" " " !& ! 5 4, ! "$ 5 , " *+ #, ,$$$$, * "# -. + # A'0('6(,,,(' B # $ " ! " "' ' " + & !" >

!

" !* ='0('6(,,,(' >(

! ! "$ " */ #, ,$$$$, 0., >B1:=basis({vector([1,1,1]),vector([1,1,0]),vector([2,2,1]),ve ctor([1,0,0])}); ;< A = 0( 0( 0 >( = 0( 0( C >( = 0( C( C > B > B2:=basis([vector([1,1,1]),vector([1,1,0]),vector([2,2,1]),ve ctor([1,0,0])]); ! "$ ;< = = 0( 0( 0 >( = 0( 0( C >( = 0( C( C > > " dotproduct(v,w) "# ! " " ! !" ' " '&D ! "

' " ! !. " " ! " " ! ! E'(DF( * 3 "$" ' $" 4 % "$" ! $ !" " " ! "$ " ' "( ' F:= proc(x) local y;y:=evalm(x); ! " ' = @( J8 > % " * !" ' !" !5 " "#! $ ! % % % % " ' " ! " $ * !" ' !" % . ! 5 $" "; " ' " " ' " , " ! "$ " proc ' " , . ( ( 4→= + + (− − > % "$"

" $ !

vector([y[1]+y[2]+y[3],-y[1]-y[3]]); end; ;< 3 4 K ;< ' !$3 4 K ' > F([1,2,3]); "# & * & " ' " ! ; > u:=vector(3); ;< > F(u); = > v:=vector(3); ;< > F(v); = > F(u)+F(v); = > F(u+v); = ' % * !"
0 0 0 0

" 3 = = 0 > + = 6 > + = 7>( − = 0 > − = 7 > > 4 = @( J8 >

&

!

!

# $" "$ "# )$ " !(
7

* )$ "

(' " ' , !,

"

7

" ! ! "

&

% * $" *

&3 0 ,, 7( = > 4
6

+

+

7(



0



7>

&3 0 ,, 7( = > 4
6

+ −

+
7>

7(



0



7>

+ +

6

+ +

7(

− +

0

+= +

0

+

6

+

7(



0



7>

0

6

6

+ "

7

7(



0−

0



7

− !2

7>

" )! $" ' " ' ! ! % !!" 4; > equal(F(u)+F(v),F(u+v)); > F(a*u); = > a*F(u);
0

5 !

" $"

! "$

" "

3"

+

6

+

7(



0



7>

= 0 + 6 + 7( − 0 − 7 > ' % * !" " )! $" ' " " 5 ! " $" : ' ! ! % !!" 3" ! 2 ! "$ " 4; > simplify(evalm(F(a*u)-a*F(u))); = C( C > ; ! %! ( $ 2 JJF ' $ ( ! * ( & % " 1 ! !& !" " % 1 ! " ! # "!! " !( ! % 1 (!$ 5 "" ! , " ! "" & ! 1 ! " !'

!" $ $" *

"#

! " ! "

& ( 1 " ! % " $ 2 ! $ " 4 ! # 1 ( ( " ! $ 2

"! $ !* "# $ ! ! ( " "' ! $ 2 "

" "' " " ! ' " "! $ 32 "! $

&

!" '

"

*

"

$ 5

!"

"

"

'

"

! #

1

, !

! "$ " 3 */4*3./#0,4*3./ 0,$$$,4*3./ 00,/3/#0,3/ 0,$$$,3/ 00. " $ $ 2 ; > A:= genmatrix([F(x)[1],F(x)[2]],[x[1],x[2],x[3]]); ;< " $" '
7...
tracking img