Triangulo

Solo disponible en BuenasTareas
  • Páginas : 7 (1566 palabras )
  • Descarga(s) : 0
  • Publicado : 19 de enero de 2011
Leer documento completo
Vista previa del texto
1. Triángulo
Un triángulo es una poligonal cerrada con tres lados y tres ángulos. La suma de sus ángulos es 180º.

Cada uno de los lados es menor que la suma de los otros dos, esto es
a < b + c
b < a + c
c < a + b

De la afirmación anterior se deduce que la diferencia de dos lados es menor que el tercero.

2. Clasificación de triángulos

Atendiendo a sus lados tenemos:Triángulos equiláteros | Triángulos isósceles | Triángulo escaleno |
| | |
Los tres lados son iguales | Dos lados son iguales y el tercero es desigual | Los tres lados son desiguales |

3. Atendiendo a sus ángulos:
Acutángulo | Rectángulo | Obtusángulo |
| | |
Los tres ángulos son agudos | Un ángulo es recto(90º) | Un ángulo es obtuso (>90º) |

4. Área de un triángulo

Siconocemos un lado (base) y su distancia al vértice opuesto (altura), entonces el cálculo del área viene dado por la fórmula:

Si conocemos los tres lados del triángulo, el área se puede calcular usando la fórmula de Herón
Dado un triángulo de lados a, b y c

la semisuma de sus lados, entonces

5. Potencia de un número natural
Si se desea multiplicar un número por sí mismo varias veces sepuede indicar el producto factor a factor, si son pocos factores esto se puede hacer sin mucha dificultad. Por ejemplo 2·2·2, si se multiplica por si mismo 2 tres veces.
Esta forma de expresar este tipo de operaciones es tediosa y poco práctica. Una notación más simple y práctica para expresar el producto de un número por sí mismo varias veces es la notación en forma de potencia.
Una potenciaconsta de dos partes, por un lado está la base que es el número que se multiplica por sí mismo y por otro el exponente que nos indica el número de veces que se multiplica el número.

Ejemplo

6. Números decimales
Los números decimales son una forma de expresar número noenteros,esto es, números racionales e irracionales, en el caso de los número racionales podremos establecer una biyección entre una fracción y un número decimal, en el caso de los irracionales los números decimales servirán para acotarlos y dar una aproximación del número.

Dado un número racional , si realizamos la división de a entre b obtendremos un número, ese es el número decimal asociado alnúmero racional ,
7. Clasificación de los números atendiendo a su parte decimal
1. Números enteros: Carecen de parte decimal, por ejemplo, 1, 8, -3, 9
2. Números decimales exactos:
    Tienen un número finito de cifras decimales, ejemplo 2,33 5,6789
3. Números decimales periódicos:
Tienen infinitas cifras decimales que siguen una pauta a partir de una dada, a las cifras que se repiten se lesllama periodo,como no se pueden expresar las infinitas cifras se coloca un arco sobre las cifras que forma el periodo, ésto indica que hay infinitas cifras que se repiten según el perido fijado.

Los números periódicos se subdividen a su vez en:
a)Periódicos puros: Todas la cifras decimales forman parte del periodo
  
b)Periódico mixto: Hay cifras en la parte decimal que no forman parte delperiodo
  

4. Números decimales no periódicos:
    Tienen infinitas cifras decimales que no siguen una apauta, es el caso de números como

|
-------------------------------------------------
Principio del formulario
* | 8. MatrizUna matriz es una colección ordenada de elementos colocados en filas y columnas. Nosotros trabajaremos con matrices formadas por númerosreales.
La dimensión de una matriz viene dada por el número de filas y columnas que tenga, así una matriz de dimensión 2x3 es una matriz con dos filas y tres columnas.
Las matrices se suelen notar con letras mayúsculas y sus elementos si son genéricos con minúsculas y un subíndice que indica la fila y columa en que se encuentra, así a23 hace referencia al elemento que se encuentra en la fila 2...
tracking img