Triple producto escalar

Solo disponible en BuenasTareas
  • Páginas : 2 (462 palabras )
  • Descarga(s) : 4
  • Publicado : 6 de marzo de 2010
Leer documento completo
Vista previa del texto
INTERPRETACIÓN GEOMÉTRICA DEL TRIPLE PRODUCTO ESCALAR
Sean u, v y w tres vectores no coplanares, entonces forman los lados de un paralelepípedo en el espacio como lo muestra la figura.

El volumendel paralelepípedo está dado por:
* el área de la base, que es el producto cruz de los vectores | v x w|
* y por la altura h, que es el valor absoluto de la componente de w en la direcciónortogonal al plano | v x w|. De aquí se puede decir que:
El volumen de un paralelepípedo determinado por los vectores u, v y w es:
Volumen = | (u· (v x w)|
 
 
Ejemplo
Dados los vectores u = (1, –2, 3);v = (0, 4, 2) y u = (–4, 1, –1), obtenga el volumen del paralelepípedo delimitado por ellos.
Solución
  u  = (1, –2, 3); v = (0, 4, 2) y u = (–4, 1, –1),
=
| (ux v)·w|=– 6+16+48 = 58 u3
Condiciónparalelismo entre vectores
No es difícil deducir que dos vectores cuyos componentes son múltiplos (enteros o no) de otro, son paralelos entre sí, de manera que se puede decir que:
Dos vectores no nulos vy w, son paralelos si y sólo si existe un escalar k, diferente de cero, tal que
v = kw
Ejemplo 1
Dados los siguientes vectores, grafíquelos, compruebe que son paralelos e identifique el valor delescalar.
u = (2, 4, 1), v = (1, 2, ½); w = (–2, –4,–1)

Si k1 = ½, entonces; ku = v
Si k2 = –1, entonces; ku = w
Observe que siempre que los vectores paralelos tienen el mismo origen los vectores sonademás colineales, sin embargo, la condición de paralelismo se cumple en otras condiciones.
Ejemplo 2
Sean los puntos A(1,4), B(4, 5), C(–1, 2), D(2,3), E(1,–2), F(–5, –4), forme los vectoressiguientes, grafíquelos y compruebe su condición de paralelismo: AB, CD , EF
 

Solución
SI se establecen vectores de origen tenemos:
AB = u = (4–1, 5 –4) = (3, 1);
AD = v = (2–(–1), 3 –2) = (3, 1);
CB = w =(1–(–5), –2 –(–4)) = (6, 2);
Se puede observar que: u = v y w = 2u, por lo que os vectores son paralelos.
Condición de perpendicularidad entre vectores
Dos vectores no nulos son perpendiculares si...
tracking img