T-estudent

Solo disponible en BuenasTareas
  • Páginas : 6 (1281 palabras )
  • Descarga(s) : 0
  • Publicado : 26 de agosto de 2012
Leer documento completo
Vista previa del texto
Distribución de t Student
Teoría de pequeñas muestras
En probabilidad y estadística, la distribución-t o distribución t de Student es una distribución de probabilidad que surge del problema de estimar la media de una población normalmente distribuida cuando el tamaño de la muestra es pequeño. A la teoría de pequeñas muestras también se le llama teoría exacta del muestreo, ya que también lapodemos utilizar con muestras aleatorias de tamaño grande. Veremos un nuevo concepto necesario para poder entender la distribución t Student. Este concepto es "grados de libertad". Para definir grados de libertad se hará referencia a la varianza maestral:

s2 


i 1

n

( xi  x ) 2 n 1

Esta fórmula está basada en n-1 grados de libertad. Esta terminología resulta del hecho de que sibien s2 está basada en n cantidades éstas suman cero, así que especificar los valores de cualquier n-1 de las cantidades determina el valor restante. Por ejemplo, si n=4 y x1  x automáticamente tenemos

x1  x , x2  x ,...xn  x ,

 8 ; x2  x  6 y x4  x  4 , entonces x3  x  2 , así que sólo tres de las cuatro

medidas de xi  x están libremente determinadas, la otra debe tomar elvalor que haga esta suma cero; es por esto que solo tenemos 3 grados de libertad. grados de libertad=número de mediciones-1

Distribución de probabilidad t-Student
Una variable aleatoria se distribuye según el modelo de probabilidad t o T de Student con k grados de libertad, donde k es un entero positivo, si su función de densidad es la siguiente:

 k 1 (k1)  Γ   t2  2 2    h k (t)  1  k  k  Γ  πk  2

   t  ,

donde

Γ(p)   e  x x p 1dx
0



La gráfica de esta función de densidad es simétrica, respecto del eje de ordenadas, con independencia del valor de k, y de forma algo semejante a la de una distribución normal:

Distribución t de Student con 10 grados de liberta Su valor medio y varianza son

 k 1 (k1)  Γ  2   t2  2 1  E(T)     t..h k (t).dt   t.  dt  ....  0  k k     Γ  πk 2
 

Si k>3

 k 1 (k1)  Γ   t2  2 k 2    Var(T)   2  E ((T   ) 2 )   (t -  ) 2 .h k (t).dt   t.  dt  ....  1  k  k 2 k    Γ  πk  2 La siguiente figura presenta la gráfica de varias distribuciones t. La apariencia general de la distribución t es similar a la de ladistribución normal estándar: ambas son simétricas y unimodales, y el valor máximo de la ordenada se alcanza en la media μ = 0. Sin embargo, la distribución t tiene colas más amplias que la normal; esto es, la probabilidad de las colas es mayor que en la distribución normal. A medida que el número de grados de libertad tiende a infinito, la forma límite de la distribución t es la distribución normalestándar.
 

Propiedades de las distribuciones t
1. Cada curva t tiene forma de campana con centro en 0. 2. Cada curva t, está más dispersa que la curva normal estándar. 3. A medida que k aumenta, la dispersión de la curva t correspondiente disminuye. 4. A medida que k  , la secuencia de curvas t se aproxima a la curva normal estándar La distribución de probabilidad de t se publicó por primeravez en 1908 en un artículo de W. S. Gosset. En esa época, Gosset era empleado de una cervecería irlandesa que desaprobaba la publicación de investigaciones de sus empleados. Para evadir esta prohibición, publicó su trabajo en secreto bajo el nombre de "Student". En consecuencia, la distribución t normalmente se llama distribución t de Student, o simplemente distribución t.

Ejemplo de calibraciónSe desea saber si un instrumento de medición cualquiera está calibrado, desde el punto de vista de la exactitud. Para ello se consigue un valor patrón y se lo mide 10 veces (por ejemplo: una pesa patrón para una balanza, un suero control para un método clínico, etc.). Suponiendo que el resultado de estas mediciones arroja una media de 52,9 y una desviación de 3, usando un patrón de valor...
tracking img