05 Formulario
Departamento de Matem´atica
Casa Central
Esteban Henr´ıquez C.
Vectores Aleatorios
2do. Semestre 2010
MAT 042 – PROBABILIDAD Y ESTAD´ISTICA INDUSTRIALFormulario Vectores Aleatorios
X = (X, Y) es absolutamente continuo
X = (X, Y) es discreto
fX,Y (x, y) ≥ 0
fX,Y (x, y) ≥ 0
∞
∞
∞
∞
−∞
−∞
fX,Y (x, y) = 1
fX,Y (x, y) dy dx = 1
y=−∞ x=−∞
P[X =x, Y = y] = fX,Y (x, y)
P[X = x, Y = y] = 0
Marginal de X
Marginal de Y
F X (x) = l´ım F X,Y (x, y)
y→∞
∞
fX,Y (x, y) , Discreto
y=−∞
fX (x) =
∞
fX,Y (x, y) dy ,Continuo
−∞
∞ ∞
xr fX,Y (x, y) , Disc.
x=−∞ y=−∞
E [X r ] =
xr fX,Y (x, y) dydx , Cont.
2
FY (y) = l´ım F X,Y (x, y)
x→∞
∞
fX,Y (x, y) , Discreto
x=−∞
fY (y) =
∞
fX,Y (x, y) dx , Continuo
−∞
∞
∞
yr fX,Y (x, y) , Disc.
x=−∞ y=−∞
E [Y r ] =
yr fX,Y (x, y) dydx , Cont.
2
V [X] = E[X ] − (E [X])
V[Y] = E[Y 2 ] − (E [Y])2
R
2
2
E g(X, Y)
R
Sea g : R2 → R, entonces:
∞ ∞
g(x, y) fX,Y (x, y) , Disc.
x=−∞ y=−∞
=
g(x, y) fX,Y (x, y) dydx , Cont.
R2
Cov(X, Y)= E[XY] − E[X]E[Y]
Cov(X, X) = V[X]
Condicional: Y/X = x
fX,Y (x, y)
f (x)
X ∞
yr fY/X=x (y) , Disc.
y=−∞
r
E [Y /X = x] =
∞
yr fY/X=x (y) dy , Cont.
fY/X=x (y) =
fX,Y (x, y) = fX (x) fY (y)
X⊥Y ⇔
F X,Y (x, y) = F X (x)FY (y)
X⊥Y ⇒ Cov(X, Y) = 0
ρX,Y
ρX,Y
Cov(X, Y)
√
V[X]V[Y]
≤ 1
=
E[aX ± bY] = aE[X] ± bE[Y]
V[aX ± bY] = a2 V[X] + b2 V[Y]
±2abCov(X,Y)
E[Y] = E[E [Y/X = x]]
E[XY/X = x] = X E [Y/X = x]
−∞
V [Y/X = x] = E[Y 2 /X = x] − (E [Y/X = x])2
An´alogo para el caso X/Y = y
V[Y] = VEntre + VDentro
= V[E [Y/X = x]] +
+E[V [Y/X = x]]Cov(aV1 + bV2 , cW1 + dW2 ) = acCov(V1 , W1 ) + adCov(V1 , W2 ) + bcCov(V2 , W1 ) + bdCov(V2 , W2 )
LATEX 2ε \ EHC – 02 de noviembre de 2010
Universidad T´ecnica Federico Santa Mar´ıa
Departamento de...
Regístrate para leer el documento completo.