1 P Tabla De Derivadas E Integrales
Tabla-26/C
FISICANET
fisicanet@interlap.com.ar
Tabla de Derivadas e Integrales
Función
Dervada
Integral
y=c
y' = 0
c.x
y = c.xy' = c
c.x2/2
y = xn
y' = n.xn-1
xn+1/n+1
y=xn
y’ = -1/(n.xn-1)
x-n+1/-n+1
y = x½
y’ = 1/(2.x½)
2.x3/2/3
y = xa/b
y' = a.x(a/b)-1/bx(a/b)+1/[(a/b)+1]
y = 1/x
y' = -1/x2
ln x
y = sen x
y' = cos x
-cos x
y = cos x
y' = -sen x
-
sen x
2
y = tg x
y' = 1/cos x
y = cotg x
y' =-1/sen2x
-ln cos x
ln sen x
2
y = sec x
y' = sen x/cos x
ln (tg ½.x)
y = cosec x
y' = -cos x/sen2x
ln [cos x/(1 - sen x)]
2 ½
y = arcsen xy' = 1/(1 - x )
x.arcsen x + (1 - x2)½
y = arccos x
y' = -1/(1 - x2)½
x.arccos x - (1 - x2)½
y = arctg x
y' = 1/(1 + x2)
x.arctg x - ½ln (1 +x2)
y = arccotg x
y' = -1/(1 + x2)
x.arccotg x + ½ln (1 + x2)
y = arcsec x
y' = 1/[x.(x2 -1)½]
1
y = arccosec x
y' = -1/[x.(x2 – 1)½]
2
y =senh x
y' = cosh x
cosh x
y = cosh x
y' = senh x
senh x
2
y = tgh x
y' = sech x
ln cosh x
y = cotgh x
y' = -cosech2x
ln senh x
y = sech xy' = -sech x.tgh x
3
y = cosech x
y' = -cosech x.cotgh x
4
y = ln x
y' = 1/x
x.(ln x - 1)
y = logax
y' = 1/x.ln a
x.( logax - 1/ln a)
y=ex
y' = e
x
ex
y = ax
y' = ax.ln a
ax/ln a
y = xx
y' = xx.(ln x + 1)
5
y = eu
y’ = eu.u’
6
y = u.v
y' = u'.v + v'.u
y = u/v
y=u
v
y =lnuv
y' = (u'.v - v'.u)/v
∫u.dv + ∫v.du
2
7
v
y' = u .(v'.lnu + v.u'/u)
8
2
y’ = (v’.u.lnu - u’.v.lnv)/v.u.ln u
9
Ricardo Santiago Netto
Regístrate para leer el documento completo.