aaaa
La unión de los racionales y los irracionales forma el conjunto de los números reales. .
El conjunto de los reales, con el orden inducido por el orden ya visto en , y es un conjunto totalmente ordenado.
Teniendo eso en cuenta, se puede representar gráficamente el conjunto de los reales con una recta, en la que cada punto representa un número.
Muchas de laspropiedades que hemos visto para los conjuntos e son heredadas por .
Como ya se ha visto, es denso en . También es denso en .
Podemos considerar como el conjunto de todos los límites de sucesiones cuyos términos son números racionales.
A diferencia de lo visto para , y , el conjunto de los reales no es numerable.
Tipos de números reales[editar]
Un número real puede ser unnúmero racional o un número irracional. Los números racionales son aquellos que pueden expresarse como el cociente de dos números enteros, tal como 3/4, -21/3, 5, 0, 1/2, mientras que los irracionales son todos los demás. Los números racionales también pueden describirse como aquellos cuya representación decimal es eventualmente periódica, mientras que los irracionales tienen una expansión decimalaperiódica:
Ejemplos
1/4 = 0,250000... Es un número racional puesto que es periódico a partir del tercer número decimal.
5/7 = 0,7142857142857142857.... Es racional y tiene un período de longitud 6 (repite 714285).
es irracional y su expansión decimal es aperiódica.
Otra forma de clasificar los números reales es en algebraicos y trascendentes. Un número es algebraico si existe un polinomio decoeficientes racionales que lo tiene por raíz y es trascendente en caso contrario. Obviamente, todos los números racionales son algebraicos: si es un número racional, con p entero y q natural, entonces es raíz de la ecuación qx=p. Sin embargo, no todos los números algebraicos son racionales.
Ejemplos
El número es algebraico puesto que es la raíz del polinomio
Un ejemplo de número trascendentees
En matemáticas, los números reales (designados por ) incluyen tanto a los números racionales (positivos, negativos y el cero) como a los números irracionales; y en otro enfoque, trascendentes y algebraicos. Los irracionales y los trascendentes1 (1970) no se pueden expresar mediante una fracción de dos enteros con denominador no nulo; tienen infinitas cifras decimales aperiódicas, talescomo: , el número real log2, cuya trascendencia fue mentada por Euler en el siglo XVIII.1
Los números reales pueden ser descritos y construidos de varias formas, algunas simples aunque carentes del rigor necesario para los propósitos formales de matemáticas y otras más complejas pero con el rigor necesario para el trabajo matemático formal.
Numeros Reales
Enviado porMarco Corrales
________________________________________
________________________________________
1. Propiedades y operaciones con los números reales
2. Operaciones con los números Reales
3. Bibliografía
Los números reales son los números que se puede escribir con anotación decimal, incluyendo aquellos que necesitan una expansión decimal infinita. El conjunto de los números reales contienetodos los números enteros, positivos y negativos; todas las fracciones; y todos los números irracionales, aquellos cuyos desarrollos en decimales nunca se repiten.
Subconjunto de los números Reales
Propiedades y operaciones con los números reales
Para tener éxito en algebra, debe entender como sumar, restar, multiplicar y dividir números Reales.
Dos números, en la recta numérica, que están ala misma distancia del cero pero en direcciones opuestas se denominan:
Inversos aditivos, opuestos o simétricos uno del otro. Por ejemplo.
3 es el inverso aditivo de -3, y -3 es el inverso aditivo de 3
El numero 0 (cero) es su propio inverso aditivo.
La suma de un número y su inverso aditivo es 0 (cero).
Inverso aditivo
Para cualquier número real de a, su inverso aditivo es –a.
Considere...
Regístrate para leer el documento completo.