abanico de fuerzas
PROPÓSITO.
Por medio de una actividad experimental se aprenderá a sumar vectores por el método del paralelogramo.
INTRODUCCIÓN.
Las magnitudes vectoriales o vectores son aquellos que además del número y la unidad correspondiente necesita de una dirección y un sentido para quedar perfectamente determinados.
Los elementos que constituyen un vector son cuatro: Punto deaplicación, dirección, sentido y valor o magnitud.
Si deseamos representar un cambio de lugar (deslizamiento) se indica si es al sur, al este, inclinado, vertical o hacia arriba; un desplazamiento si tiene dirección en el espacio; además de indicar el tamaño o valor del desplazamiento y sus unidades; esta es una magnitud vectorial y para determinarla, se debe indicar además del numero y el nombrede la unidad, la dirección y el sentido.
Son ejemplos de magnitudes vectoriales: el cambio de lugar (desplazamiento), la velocidad, la aceleración, etcétera. Otras cantidades físicas como las fuerzas, las velocidades y la aceleración tienen, además de magnitud, una dirección.
Para realizar una suma de vectores debemos de saber la definición de tres componentes importantes: Fuerza, fuerzasconcurrentes y paralelogramo.
Como sabemos la fuerza es cualquier acción, esfuerzo o influencia que puede alterar el estado de movimiento o de reposo de cualquier cuerpo. Esto quiere decir que una fuerza puede dar aceleración a un objeto, modificando su velocidad, su dirección o el sentido de su movimiento, esta nos ayudara en el entendimiento de los vectores además de que será una de lasprincipales unidades que utilizaremos.
Se consideran fuerzas concurrentes a aquellas que inciden en un mismo punto, es decir que concurren formando uno o más ángulos de acuerdo al número de fuerzas que actúan, a este tipo de fuerzas también se les llama angulares.
Con estos conceptos definidos podemos comenzar con la suma de vectores de las cuales encontraremos dos tipos: Suma de vectores por el métodoanalítico y Suma de vectores por el método gráfico.
Para sumar vectores algebraicamente primero, hallamos las componentes de todos los vectores y en algún sistema de coordenadas que sea apropiado para el problema. A continuación, se suman todos los componentes X para hallar la componente resultante en la dirección X. Luego sumamos todas las componentes Y para hallar la componente resultante enla dirección Y. Como las componentes resultantes XY están a ángulos rectos entre sí, se puede hacer un dibujo y usar el teorema de Pitágoras para determinar la magnitud del vector resultante. Por último, se utiliza una función trigonométrica apropiada y las componentes del vector resultante para hallar el ángulo que el vector resultante forme con el eje X.
La otra forma de sumar es la suma devectores gráficamente y se realiza de la siguiente manera; ya que sabemos que un vector se representa por un segmento de una recta con una dirección y un sentido. La longitud de la flecha es la representación de la magnitud. Estos segmentos de recta se llaman vectores.
Éste es el método gráfico más utilizado para realizar operaciones con vectores, debido a que se pueden sumar o restar dos o másvectores a la vez. El método consiste en colocar en secuencia los vectores manteniendo su magnitud, a escala, dirección y sentido; es decir, se coloca un vector a partir de la punta flecha del anterior. El vector resultante esta dado por el segmento de recta que une el origen o la cola del primer vector y la punta flecha del último vector.
El métodos gráfico ofrece una manera sencilla de sumardos o más vectores; pero cuando las magnitudes de los vectores son demasiado grandes o poseen una gran cantidad de decimales, éstos métodos se vuelven imprecisos y difíciles de manipular a escalas de medición menores. Es por eso, la necesidad de un método matemático nemotécnico, que permita dar una mayor precisión en el cálculo de vectores resultantes, no sólo en la magnitud, sino además en la...
Regístrate para leer el documento completo.