Algebra booleana
De Wikipedia, la enciclopedia libre
Saltar a navegación, búsqueda
Se denomina función lógica o booleana a aquella función matemática cuyas variables son binarias y están unidas mediante los operadores del álgebra de Boole suma lógica (+), producto lógico (·) o negación(').
Contenido
[ocultar]
* 1 Modos de representación
o 1.1 Algebraica
o 1.2Por tabla de verdad
o 1.3 Numérica
o 1.4 Gráfica
* 2 Métodos de simplificación
o 2.1 Algebraico
o 2.2 Gráfico de Karnaugh
o 2.3 Numérico de Quine-McCluskey
* 3 Funciones incompletas
Modos de representación [editar]
Existen distintas formas de representar una función lógica, entre las que podemos destacar las siguientes:* Algebraica
* Por tabla de verdad
* Numérica
* Gráfica
El uso de una u otra, como veremos, dependerá de las necesidades concretas en cada caso.
Algebraica [editar]
Se utiliza cuando se realizan operaciones algebraicas. A continuación se ofrece un ejemplo con distintas formas en las que se puede expresar algebraicamente una misma función de tres variables.a) F = [(A + BC’)’ + ABC]’ + AB’C
b) F = A’BC’ + AB’C’ + AB’C + ABC’
c) F = (A + B + C)(A + B + C’)(A + B’ + C’)(A’ + B’ + C’)
d) F = BC’ + AB’
e) F = (A + B)(B’ + C’)
f) F = [(BC’)’ · (AB’)’]’
g) F = [(A + B)’ + (B’ + C’)’]’
La expresión a) puede proceder de un problema lógico planteado o del paso de unas especificaciones a lenguaje algebraico. Las formas b) yc) reciben el nombre expresiones canónicas: de suma de productos (sum-of-products, SOP, en inglés), la b), y de productos de sumas (product-of-sums, POS, en inglés), la c); su característica principal es la aparición de cada una de las variables (A, B y C) en cada uno de los sumandos o productos. Las d) y e) son funciones simplificadas, esto es, reducidas a su mínima expresión. Las dos últimasexpresiones tienen la particularidad de que exclusivamente utiliza funciones NO-Y, la f), o funciones NO-O, la g).
Por tabla de verdad [editar]
Una tabla de verdad contiene todos los valores posibles de una función lógica dependiendo del valor de sus variables. El número de combinaciones posibles para una función de n variables vendrá dado por 2n. Una función lógica puede representarsealgebraicamente de distintas formas como acabamos de ver, pero sólo tiene una tabla de verdad. La siguiente tabla corresponde a la función lógica del punto anterior.
A B C F
0
0
0
0
0
0
1
0
0
1
0
1
0
1
1
0
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
0
La forma más cómoda para ver la equivalencia entre una tablade verdad y una expresión algebraica es cuando esta última se da en su forma canónica. Así, la función canónica de suma de productos (o forma canónica disyuntiva)
F = A’BC’ + AB’C’ + AB’C + ABC’
nos indica que será 1 cuando lo sea uno de sus sumandos, lo que significa que tendrá por lo tanto cuatro combinaciones que lo serán (010 para A’BC’, 100 para AB’C’, 101 para AB’C y 110 paraABC’) siendo el resto de combinaciones 0. Con la función canónica de producto de sumas (o forma canónica conjuntiva) se puede razonar de forma análoga, pero en este caso observando que la función será 0 cuando lo sea uno de sus productos.
También es fácil obtener la tabla de verdad a partir de la función simplificada, pero no así a la inversa.
Numérica [editar]
La representación numérica esuna forma simplificada de representar las expresiones canónicas. Si consideramos el criterio de sustituir una variable sin negar por un 1 y una negada por un 0, podremos representar el término, ya sea una suma o un producto, por un número decimal equivalente al valor binario de la combinación. Por ejemplo, los siguientes términos canónicos se representarán del siguiente modo (observe que se...
Regístrate para leer el documento completo.