algebra
*Antes de Grecia._
Las primeras civilizaciones mediterraneas adquieren poco a poco ciertos conocimientos geométricos de caracter muy práctico. Estos son esencialmente algunas fórmulas -o mejor dicho algoritmos expresados en forma de ""receta""- para calcular areas y longitudes. La finalidad era práctica, pues se pretendía con ello calcular la producción proporcional de las parcelasde tierra para determinar los impuestos, o reconstruir las parcelas de tierra después de las inundaciones. Siempre se ha dicho que los egipcios tenían una alta formación matemática, y se ha llegado a insinuar que tuvieran un acervo de conocimientos secretos o que se hubieran perdido con el paso de los tiempos. Estas hipótesis nunca han sido confirmadas, y los documentos existentes tienden aecharlas por tierra. La Historia nos hace pensar que el conocimiento que esta civilización -así como los de las culturas mesopotámicas- tuviera sobre Geometría pasó integramente a la cultura griega a traves de Tales, los pitagóricos, y esencialmente de Euclides.
*Antes de Euclides._
En efecto, Tales permaneció en Egipto una larga temporada de su vida, aprendiendo de los sacerdotes y escribas egipciostodo lo referente a sus conocimientos en general, y estos quedaron asombrados cuando fue capaz de medir la altura de la Pirámide de Keops y de predecir un eclipse solar.
La Geometría Griega fue la primera en ser formal. Parte de los conocimientos concretos y prácticos de las civilizaciones egipcia y mesopotámicas, y da un paso de abstracción al considerar los objetos como entes ideales -uncuadrado cualquiera, en lugar de una pared cuadrada concreta, un círculo en lugar del ojo de un pozo...- que pueden ser manipulados mentalmente, con la sola ayuda de la regla y el compás. Aparece por primera vez la demostración como justificación de la veracidad de un conocimiento, aunque en un primer momento fueran más justificaciones intuitivas que verdaderas demostraciones formales.
La figura dePitágoras y de la secta por él creada (los pitagóricos) tiene un papel central, pues eleva a la categoría de elemento primigenio el concepto de número (filosofía que de forma más explícita o más implícita, siempre ha estado dentro de la Matemática y de la Física), arrastrando a la Geometría al centro de su doctrina -en este momento inicial de la historia de la Matemática aun no hay una distinciónclara entre Geometría y Aritmética-, y asienta definitivamente el concepto de demostración (éste ya sí coincide con el concepto de demostración formal) como única vía de establecimiento de la verdad en Geometría.
Esta actitud permitió (aun fuera de la secta) la medición de la tierra por Eratóstenes, así como la medición de la distancia a la luna, y la invención de la palanca por Arquímedes, variossiglos después.
En el seno de la secta de los pitagóricos surge la primera crisis de la Matemática: la aparición de los inconmensurables, pero esta crisis es de caracter más aritmético que geométrico.
Surge entonces un pequeño problema a nivel lógico, que consiste en lo siguiente: una demostración parte de una o varias hipótesis para obtener un resultado denominado tesis. La veracidad de latesis dependerá de la validez del razonamiento con el que se ha extraido (esto será estudiado por Aristóteles al crear la Lógica) y de la veracidad de las hipótesis. Pero entonces debemos de partir de hipótesis ciertas para poder afirmar con rotundidad la tesis. Para poder determinar la veracidad de las hipótesis, habrá que considerar cada una como tesis de otro razonamiento, cuyas hipotesis deberemostambién comprobar. Se entra aparentemente en un proceso sin fin en el que, indefinidamente, las hipótesis se convierten en tesis a probar.
*Euclides y los elementos._
Euclides, vinculado al Museo de Alejandría y a su Biblioteca, zanja la cuestión al proponer un sistema de estudio en el que se da por sentado la veracidad de ciertas proposiciones por ser intuitivamente claras, y deducir de...
Regístrate para leer el documento completo.