algebra

Páginas: 3 (698 palabras) Publicado: 14 de mayo de 2014
4.3 Combinación lineal. Independencia lineal.
COMBINACIÓN LINEAL

Sean v1, v2, …, vn, vectores en un espacio vectorial V. entonces cualquier vector de la forma: a1v1+a2v2+…+anvn, donde a1,a2,…,anson escalares se denomina una combinación lineal de v1, v2,…,vn.

Una combinación lineal en M23



Conjunto generador.

Se dice que los vectores v1, v2, …, vn de un espacio vectorial Vgeneran a V si todo vector en V se puede escribir como una combinación lineal de los mismo. Es decir, para todo vÎV, existen escalares a1, a2, …, an tales que v=a1v1+a2v2+…+anvn

Cuatro vectores quegeneran a M22



Espacio generado por un conjunto de vectores.

Sean v, v2, …, vk, k vectores de un espacio vectorial V. el espacio generado por {v1, v2, …, vk} es el conjunto de combinacioneslineales v1, v2, …, vk. Es decirdonde a1, a2, …, ak, son escalares arbitrarios.

Teorema: si v1, v2, …, vk son vectores en un espacio vectorial V, entonces gen{v1, v2, …, vk} es un subespacio de V.Ejemplo: el espacio generado por dos vectores en R3

Sea v1=(2,-1,4) y v2=(4,1,6). Entonces H=gen{v1, v2}={v:v=a1(2,-1,4)+a2(4,1,6)}. ¿Cuál es la apariencia de H? si v=(x, y,z)ÎH, entonces tienex=2a1+4a 2, y=-a1+a2 y z=4a 1+6ª 2. Si se piensa que (x, y, z) esta fijo, entonces estas ecuaciones se pueden ver como un sistema de tres ecuaciones con tres incognitas a1, a2. Este sistema se resuelve enla forma usual:




INDEPENDENCIA LINEAL
En el estudio del algebra lineal, una de las ideas centrales es la de dependencia o independencia lineal de los vectores. En esta sección se define elsignificado de independencia lineal y se muestra su relación con la teoría de sistemas homogéneos de ecuaciones y determinantes.

Existe una relación espacial entre los vectores , se puede apreciar quev2=2v1; o si se escribe esta ecuación de otra manera. 2v1-v2=0.

En otras palabras, el vector cero se puede escribir como una combinación no trivial de v1 y v2 (es decir, donde los coeficientes...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Algebra
  • Algebra
  • Algebra
  • El algebra
  • Algebra
  • Algebra
  • Algebra
  • Algebra

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS