AN LISIS DE LA VARIANZA
Análisis de la varianza
El análisis de la varianza (o Anova: Analysis of variance) es un método para comparar dos o más medias, que es necesario porque cuando se quiere comparar más de dos medias es incorrecto utilizar repetidamente el contraste basado en la t de Student. por dos motivos:
En primer lugar, y como se realizarían simultánea eindependientemente varios contrastes de hipótesis, la probabilidad de encontrar alguno significativo por azar aumentaría. En cada contraste se rechaza la H0 si la t supera el nivel crítico, para lo que, en la hipótesis nula, hay una probabilidad . Si se realizan m contrastes independientes, la probabilidad de que, en la hipótesis nula, ningún estadístico supere el valor crítico es (1 - )m, por lo tanto,la probabilidad de que alguno lo supere es 1 - (1 - )m, que para valores de próximos a 0 es aproximadamente igual a m. Una primera solución, denominada método de Bonferroni, consiste en bajar el valor de , usando en su lugar /m, aunque resulta un método muy conservador.
Por otro lado, en cada comparación la hipótesis nula es que las dos muestras provienen de la misma población, por lo tanto,cuando se hayan realizado todas las comparaciones, la hipótesis nula es que todas las muestras provienen de la misma población y, sin embargo, para cada comparación, la estimación de la varianza necesaria para el contraste es distinta, pues se ha hecho en base a muestras distintas.
El método que resuelve ambos problemas es el anova, aunque es algo más que esto: es un método que permite compararvarias medias en diversas situaciones; muy ligado, por tanto, al diseño de experimentos y, de alguna manera, es la base del análisis multivariante.
Introducción
El análisis de la varianza (o Anova: Analysis of variance) es un método para comparar dos o más medias, que es necesario porque cuando se quiere comparar más de dos medias es incorrecto utilizar repetidamente el contraste basado en la tde Student. por dos motivos:
En primer lugar, y como se realizarían simultánea e independientemente varios contrastes de hipótesis, la probabilidad de encontrar alguno significativo por azar aumentaría. En cada contraste se rechaza la H0 si la t supera el nivel crítico, para lo que, en la hipótesis nula, hay una probabilidad . Si se realizan m contrastes independientes, la probabilidad de que, enla hipótesis nula, ningún estadístico supere elvalor crítico es (1 - )m, por lo tanto, la probabilidad de que alguno lo supere es 1 - (1 - )m, que para valores de próximos a 0 es aproximadamente igual a m. Una primera solución, denominada método de Bonferroni, consiste en bajar el valor de , usando en su lugar /m, aunque resulta un método muy conservador.
Por otro lado, en cada comparaciónla hipótesis nula es que las dos muestras provienen de la misma población, por lo tanto, cuando se hayan realizado todas las comparaciones, la hipótesis nula es que todas las muestras provienen de la misma población y, sin embargo, para cada comparación, la estimación de la varianza necesaria para el contraste es distinta, pues se ha hecho en base a muestras distintas.
El método que resuelveambos problemas es el anova, aunque es algo más que esto: es un método que permite comparar varias medias en diversas situaciones; muy ligado, por tanto, al diseño de experimentos y, de alguna manera, es la base del análisis multivariante.
2. Bases del análisis de la varianza
Supónganse k muestras aleatorias independientes, de tamaño n, extraídas de una única población normal. A partir de ellas existendos maneras independientes de estimar la varianza de la población 2:
1) Una llamada varianza dentro de los grupos (ya que sólo contribuye a ella la varianza dentro de las muestras), o varianza de error, o cuadrados medios del error, y habitualmente representada por MSE (Mean Square Error) o MSW (Mean Square Within) que se calcula como la media de las k varianzas muestrales (cada varianza...
Regístrate para leer el documento completo.