Analisis de marco con mathcad
ANALISIS DE MARCO POR MATHCAD
[pic]
[pic]
grados de libertad conocidos:
u1 v1 Φ1 y v4
grados de libertad desconocidos:
u2 v2 Φ2 , u3 v3 Φ3 , u4 Φ4
CALCULAR MATRIZ DE RIGIDEZDE LOS ELEMENTOS:
ELEMENTO 1
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
ELEMENTO 2
[pic]
[pic]
[pic][pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
ELEMENTO 3
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic][pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
ENSAMBLE DE LA MATRIZ DE RIGIDEZ:
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic][pic]
[pic]
[pic]
[pic]
[pic]
[pic]
DEFINIR VECTOR DE FUERZAS INTERNAS:
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic][pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
ENTONCES ARMANDO EL VECTOR DE CARGAS INTERNAS CORRESPONDIENTES A LOS GRADOS DE LIBERTAD DESCONOCIDOS:
U2, V2, Φ2, U3, V3,Φ3,U4,Φ4
[pic]
[pic]
CALCULAR LOS DESPLAZAMIENTOS NODALES DESCONOCIDOS. VECTOR DE DESPLAZAMIENTOS
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
DEFINIENDO VALORES DEGRADOS DE LIBERTAD DESCONOCIDOS Y CONOCIDOS.
[pic]
[pic]
CALCULO DE LAS FUERZAS INTERNAS (REACCIONES).
[pic]
ELEMENTO 1
[pic]
[pic]
[pic]
ELEMENTO 2
[pic]
[pic]
[pic]
ELEMENTO3
[pic]
[pic]
[pic]
ANALISIS DE LA ARMADURA POR MATHCAD
[pic]
GDL CONOCIDOS: U1,V1,V4
GDL DESCONOCIDOS:U2,V2,U3,V3,U4
ELEMENTO 1
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic][pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
ELEMENTO 2
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
ELEMENTO 3
[pic]...
Regístrate para leer el documento completo.