Analogias Electroacústicas
"
#
"
$ % ' # & & ! * ) ! ! ' ( ) ' $ ' * ( , + , , % * + (
# & )
# " ( * ) ) ' ) # "
& ! & # # ( ! # 2 ! 3 " " " & * # & , ! ,* , 0 0! ) 0λ 4 ( , )# ! ) 5 1 $ 1 # * 1 2 % * !# ) ( ! , ) % ( / ) * # 1) ( , * ) / # + ) 0 ,
.. "
) ! ! )
+
) ! , 0 ( * * #
)
1#! + 0 ' #, # ,
1
6
77
8$ 9 :
;
77
+
> +
6
5 3
> ,
!
' , ,?: @) * # ?
, A@ -
? A @)
?2 @
?: A @)
!
6
#
!"
# #
$# %
$ * ! $ 8 ! ' 0! ' ! ' & ! 0 ' ) , ' ' ) # )
' # ) >B8C 0 1 1 ( , ' , $ ) # *
(
,
) ) ( ' 1
*,
) ) (
(
*
&' ( ,
&
) ! ' # , ( *
ZM =
B
f 1 = R M + jωM M + u jωC M
D 8F E , , ) # e( t ) = R · i ( t ) ley de Ohm
8
?: G A @ ?Ω8@ ) & ! (
$ *
, ' *
#
f (t) = R M · u (t ) ó u(t ) = f (t ) / R M ley de rozamiento
8 $ ! ' & (
ω88 B
D 8F 4 H E
?: G A @ ?I @ ! * # -
f (t ) = M M · ó u (t ) =
du(t ) dt
1 · f (t )dt MM
2 ª ley Newtondi (t ) dt 1 ó e(t ) = · i (t )dt C autoinducción o capacidad e(t ) = L·
ω 0 1 &
f (t ) =
8
B
D 8F J H E ) # *
? A @ : ( ,
1 e(t ) = · i (t )dt C di (t ) ó e(t ) = L· dt
-
1· u(t )dt CM
ó u (t ) = C M ·
df (t ) dt ley de Hooke
! $
(
&
) ! ' , -
8 ,
>
>
! E80 1BH
' A 80 E
!
' 1B ∞
> >
, E80 1B ∞ A 80 E
, 1B H
!
:
-/
# *
K
* + ( 3 ' !
* )
&
) # , + , -
F = RM ·u (t ) + M M
$ * ( , )!
du (t ) 1 d 2 u (t ) + dt C M dt 2
, ) # !
!
7
#
*
( ,
$ " " " " " " & 8 &
' ,' , ( , 0 1 " ! 1 , 0 * 1 ( ! 0% , , H 0, , , * 1
-
$
* '
!
$+
#
*
( ,
L
!"
# #
,
& 1 , ! )
! ( ! # ,
, !
!
0 # * ) (
)
&' ( #
ZA =
M , !, ( ,
1 p = R A + jωM A + U jωC A
! ' # , ) * # ( ! N 5 ! ,* ( -
7)
ZA =
f / S ZM = 2 u·S S
B * ,
RA =
D F E
RM S2
MA =
MM S2
1 1 = C A CM S 2
?: C A K@ ?Ω @ ! ! $...
Regístrate para leer el documento completo.