Aplicacion De Las Funciones En La Actualidad
Teniendo como consigna la investigación de las funciones matemáticas, comenzamos a interiorizarnos en el tema buscando la definición de la palabra función. Luego, nos inclinamos sobre ciertas funciones matemáticas específicas, tales como la función trigonométrica, cuadrática, logarítmica, exponencial, afín y polinómica.
Para cada una de las funciones, reconocimos sus aplicacionessobre otras ciencias y además aprendimos los modelos de ecuaciones matemáticas, que nos permiten resolver cualquier situación que se nos presente en la vida diaria.
Obtuvimos un resultado muy positivo al finalizar la monografía, debido a que incorporamos gran cantidad de nuevos conocimientos y también descubrimos una nueva manera de enfrentar problemáticas en campos donde creíamos que la matemáticaera inútil.
Desde el punto de vista personal, creemos que las funciones matemáticas han facilitado la labor en muchas ciencias y son sumamente necesarias para obtener resultados precisos para cada situación.
Introducción
En el presente trabajo, se detallarán las características de las diferentes funciones matemáticas y sus aplicaciones sobre las distintas ciencias y la vida cotidiana.
Lasfunciones a las que nos dedicaremos son las siguientes:
Función Trigonométrica
Función Cuadrática
Función Afín (Lineal)
Función Logarítmica
Función Exponencial
Función Polinómica
El principal objetivo de esta monografía es poder entender el uso de las funciones y así poder utilizarlas frente a los problemas diarios. El método de investigación es la consulta bibliográfica y el análisis de lamisma.
CONCEPTOS:
Funciones
Una función, en matemáticas, es el término usado para indicar la relación o correspondencia entre dos o más cantidades. El término función fue usado por primera vez en 1637 por el matemático francés René Descartes para designar una potencia xn de la variable x. En 1694 el matemático alemán Gottfried Wilhelm Leibniz utilizó el término para referirse a variosaspectos de una curva, como su pendiente. Hasta recientemente, su uso más generalizado ha sido el definido en 1829 por el matemático alemán, J.P.G. Lejeune-Dirichlet (1805-1859), quien escribió: "Una variable es un símbolo que representa un número dentro de un conjunto de ello. Dos variables X y Y están asociadas de tal forma que al asignar un valor a X entonces, por alguna regla o correspondencia, seasigna automáticamente un valor a Y, se dice que Y es una función (unívoca) de X. La variable X, a la que se asignan libremente valores, se llama variable independiente, mientras que la variable Y, cuyos valores dependen de la X, se llama variables dependientes. Los valores permitidos de X constituyen el dominio de definición de la función y los valores que toma Y constituye su recorrido".
Unafunción f de A en B es una relación que le hace corresponder a cada elemento x E A uno y solo un elemento y E B, llamado imagen de x por f, que se escribe y=f (x). En símbolos, f: A à B
Es decir que para que una relación de un conjunto A en otro B sea función, debe cumplir dos condiciones, a saber:
Todo elemento del conjunto de partida A debe tener imagen.
La imagen de cada elemento x E A debeser única. Es decir, ningún elemento del dominio puede tener más de una imagen.
El conjunto formado por todos los elementos de B que son imagen de algún elemento del dominio se denomina conjunto imagen o recorrido de f.
Observaciones:
En una función f: Aà B todo elemento x E A tiene una y solo una imagen y E B.
Un elemento y E B puede:
No ser imagen de ningún elemento x E A
Ser imagen de unelemento x E A
Ser imagen de varios elementos x E A.
La relación inversa f-1 de una función f puede no ser una función.
Formas de expresión de una función
Mediante el uso de tablas:
X | Y |
-10½12 | 10¼14 |
Gráficamente: cabe aclarar que llamamos gráfica de una función real de variable real al conjunto de puntos del plano que referidos a un sistema de ejes cartesianos ortogonales tienen...
Regístrate para leer el documento completo.