Aplicaciones de la diferencial
| COLEGIO DE BACHILLERES PLANTEL 35
JAIRO SURIEL RAMIREZ RIVERA
6 SEMESTRE GRUPO A |
[APLICACIONES DE LA DIFERENCIAL] |
El Cálculo Diferencial, es una parte importante del análisis matemático y dentro del mismo del cálculo infinitesimal. Consiste en el estudio del cambio de las variables dependientes cuando cambian las variables independientes de las funciones o campos objetosdel análisis. El principal objeto de estudio en el cálculo diferencial es la derivada. Una noción estrechamente relacionada es la de diferencial. |
Aplicaciones a la Biología:
Uno de los campos más fascinante del conocimiento al cual los métodos matemáticos han sido aplicados es el de la Biología. La posibilidad de que las matemáticas pudieran aun ser aplicadas exitosamente el estudio devarios procesos naturales de los seres vivos desde os microorganismos más elementales hasta la misma humanidad sorprende a la imaginación.
Crecimiento Biológico:
Un problema fundamental en la biología es el crecimiento, sea este el crecimiento de una célula, un organismo, un ser humano, una planta o una población. La ecuación diferencial fundamental era:
dy / dt = y
con solución
y = ceProblemas de Epidemiología:
Un problema importante de la biología y de la medicina trata de la ocurrencia, propagación y control de una enfermedad contagiosa, esto es, una enfermedad que puede transmitirse de un individuo a otro. La ciencia que estudia este problema se llama epidemiología K, y si un porcentaje grande no común de una población adquiere la enfermedad, decimos que hay una epidemia.
Losproblemas que contemplan la propagación de una enfermedad pueden ser algo complicados; para ello presentar un modelo matemático sencillo para la propagación de una enfermedad, tenemos que asumir que tenemos una población grande pero finita. Supongamos entonces que nos restringimos a los estudiantes de un colegio o universidad grande quienes permanecen en los predios universitarios por un periodorelativamente largo y que no se tiene acceso a otras comunidades. Supondremos que hay solo dos tipos de estudiantes, unos que tienen la enfermedad contagiosa, llamados infectados, y otros que no tienen la enfermedad, esto es, no infectado, pero que son capaces de adquirirla al primer contacto con un estudiante infectado. Deseamos obtener una fórmula para el número de estudiantes infectados encualquier tiempo, dado que inicialmente hay un número especificado de estudiantes infectados.
Aplicaciones a la Economía:
En años recientes ha habido un interés creciente por la aplicación de las matemáticas a la economía. Sin embargo, puesto que la economía involucra muchos factores impredecibles, tales como decisiones psicológicas o políticas, la formulación matemática de sus problemas es difícil. Sedebería hacer énfasis que, como en los problemas de ciencia e ingeniería, cualquier resultado obtenido teóricamente debe finalmente ser probado a la luz de la realidad.
Oferta y Demanda
Suponga que tenemos un bien tal como trigo o petróleo. Sea p el precio de este bien por alguna unidad especificada (por ejemplo un barril de petróleo) en cualquier tiempo t. Entonces podemos pensar que p es unafunción de t así que p(t) es el precio en el tiempo t.
El número de unidades del bien que desean los consumidores por unidad de tiempo en cualquier tiempo t se llama la demanda y se denota por D(t), o brevemente D. Esta demanda puede depender no solo del precio p en cualquier tiempo t, esto es, p(t), sino también de la dirección en la cual los consumidores creen que tomaran los precios, esto es,la tasa de cambio del precio o derivada p´(t). Por ejemplo, si los precios están altos en tiempo t pero los consumidores creen que pueden subir, la demanda tiende a incrementar. En símbolos esta dependencia de D en p(t) y p´(t) puede escribirse:
D = (p(t)),p´(t)
Llamamos la función de demanda.
Similarmente, el número de unidades del bien que los productores tienen disponible por unidad de...
Regístrate para leer el documento completo.