Arquimides
Un científico que dedicó toda su vida al estudio de la física y de las matemáticas, extrayendo aplicaciones útiles. Nació en Siracusa, ciudad de la Magna Grecia (Sicilia), en el 287 a.C.
Estudió en la escuela de Alejandría (en Egipto), una de las más famosas del mundo antiguo. Además de filósofo y matemático fue un atento observador e investigador delmundo natural.Sus intereses eran muy variados e hicieron de él uno de los mayores científicos de la Historia. Supo unir la lógica matemática a la experimentación, por esta razón se le puede considerar un hombre que se adelantó a su tiempo y precursor de Galileo.
De su vida sabemos por ilustres historiadores que no se cansaba jamás de hacer cálculos e inventar. Con él la mecánica se convirtió en unaverdadera ciencia: ya que las máquinas se empezaron a pensar y construir en función de su utilidad.
Viajó a Alejandría, centro cultural por excelencia de la antigua Grecia, donde estudió en su adolescencia, coincidió con célebres hombres de ciencia como Euclides. Cuando regresó a Siracusa, sorprendió a todos con un método de su invención, destinado a desecar pantanos mediante la utilización dediques móviles. El mecanismo sería conocido como «tornillo de Arquímedes».
Consistía en un tubo en forma de hélice, uno de cuyos extremos quedaba sumergido. Al girar sobre su eje en posición inclinada, servía para elevar el agua.
Los inventos de Arquímedes y su aplicación a máquinas de artillería contribuye ron notablemente a la defensa de Siracusa contra el asedio de los romanos; en este sentido,ideó catapultas de gran potencia y propuso un mecanismo eficaz para provocar incendios —que seria utilizado para destruir parte de la flota enemiga—, mediante el empleo de espejos parabólicos.
Su aportación a las matemáticas:
En El Arenario Arquímedes propone un método para escribir números de gran longitud, dotando a cada cifra de un orden diferente según su posición.
Entre suspublicaciones sobre geometría, las más representativas son De la esfera y del cilindro, donde introduce el concepto de concavidad, así como ciertos postulados referentes a la línea recta; Conoides y esferoides, que contiene la definió de las figuras engendradas por la rotación de distintas secciones planas de un cono y De de las espirales, centrada en el estudio de estas curvas y sus propiedades.
Ladenominada «espiral de Arquímedes» es resultado del movimiento que describe un punto que se desplaza con movimiento uniforme sobre una recta que gira alrededor de uno de sus puntos; su radio vector es proporcional al ángulo.
explica la relación entre la circunferencia de un círculo y su diámetro, lo cual le permitió obtener un cálculo notablemente preciso del valor de Pi.
Arquímedes calculó el áreade un círculo descubriendo los límites entre los cuales se hallaba dicha área, y luego estrechando gradualmente esos límites hasta aproximarse al área real. Esto lo hizo inscribiendo en el interior del círculo un polígono regular y circunscribiendo después el círculo en un polígono similar.
La precisión de este cálculo puede apreciarse por su proximidad a la cifra que hoy manejamos: Pi =3.1415927. Aquí la principal innovación de Arquímedes fue emplear la aproximación en vez de la igualdad exacta.
Aportaciones a la Física:
Las aportaciones más importantes de Arquímedes a la física son sobre la hidrostática y el equilibrio de los cuerpos. Sin duda, sus conocimientos geométricos resultaron fundamentales para determinar el centro de gravedad de los objetos sólidos.
En cierta ocasión,Arquímedes le planteó al rey de Sicilia, Hierón, el reto de mover cualquier peso, por grande que fuera, con la simple condición de contar con un objeto firme en el que poder apoyarse.
El rey le propuso entonces demostrar tal afirmación moviendo una gran galera anclada junto a la playa, que debía trasladar a tierra firme. Mediante cuerdas, poleas y palancas, colocadas adecuadamente, y aplicando los...
Regístrate para leer el documento completo.