asdas
222
SOLUCIONES
16. Quedan:
a) D ⎡ x 6 ⎤ = 6 x 5
⎣ ⎦
−35
⎡7⎤
b) D ⎢ 5 ⎥ = D ⎡7 x −5 ⎤ = − 7·5 x −6 = 6
⎣
⎦
x ⎦
x
⎣
1
2
c) D ⎡8 4 x ⎤ = D ⎡8 x 4 ⎤ = 4
⎣
⎦
⎢
⎥
⎣
⎦
x3
d) D ⎡3 x 2 − x + 4 ⎤ = 6 x − 1
⎣
⎦
(
)
(
4
e) D ⎡ x 2 + x ⎤ = ( 8 x + 4 ) x 2 + x
⎢
⎥
⎣
⎦
)
3
⎡ 5x ⎤
20
=
f) D ⎢
4 + 5 x ⎥ ( 4 + 5 x )2
⎣
⎦
⎡
1
g) D ⎢
⎢x5 − x2 + 3
⎣
(
)
⎤
⎥ = D ⎡ x5 − x2 + 3
5
⎢
⎥
⎣
⎦
(
)
−5
4
⎤ = −25 x + 10 x
⎥
⎦ x5 − x2 + 3 6
(
)
⎡ x 2 − 1⎤ x
h) D ⎢
⎥=
⎣ 4 ⎦ 2
⎡
⎤
3
⎥=
i) D ⎢
2
⎢
⎣ 4x + 5 ⎥
⎦
−12 x
( 4x
2
+5
)
3
17. Las derivadas quedan:
⎛ −3 ⎞
⎡ 3⎤
x
a) D ⎣ 4 x ⎦ = 4 ⋅ ln 4 ⋅ ⎜ 2 ⎟
⎝x ⎠
2
2
c) D ⎡e 2 x − e x − 2⎤ = e 2 x ⋅ 4 x − e x
⎣
⎦
⎡ e−2 x ⎤ −e −2 x
e) D ⎢
⎥=
2
⎣ 4 ⎦
3
b) D ⎡3 ⋅ 2 x ⎤ = 3 ⋅ 2 x ⋅ ln 2
⎣
⎦
d) D ⎡2 x ⋅ 3 x ⎤ = D ⎡ 6 x ⎤ = 6 x ⋅ 2 x ⋅ ln 6
⎣
⎦
⎣ ⎦
2
(
2
2
)
2
(
)
3
2
f) D ⎡ e 2 x + 1 ⎤ = 6 ⋅ e 2 x e 2 x + 1
⎢
⎥
⎣
⎦
223
18. Las derivadas quedan:
(
)
2x
a) D ⎡ln x 2 + 7 ⎤ = 2
⎣
⎦ x +7
(
x
)
e
b) D ⎡ln e x + 2 ⎤ = x
⎣
⎦ e +2
(
c) D ⎡ln3 − 4 x 3
⎣
)
5
2
2
⎤ = D ⎡5 ⋅ ln 3 − 4 x 3 ⎤ = 5 ⋅ −12 x 3 = −60 x 3
⎦
⎣
⎦
3 − 4x 3 − 4x
(
)
2x
⎡1
⎤ 1 6x
= 2
d) D ⎡ln 3 3 x 2 + 1⎤ = D ⎢ ln 3 x 2 + 1 ⎥ = · 2
⎣
⎦
⎣3
⎦ 3 3x + 1 3x + 1
(
(
)
)
2x
e) D ⎡log2 x 2 + 1 ⎤ = 2
⎣
⎦ x + 1 ln 2
(
)
−
1
1
⎡ 1− x ⎤
− x
2 x 2 x
f) D ⎢ln
−
=
⎥ = D ⎡ln 1− x − ln 1+ x ⎤ =
⎣
⎦ 1− x 1 + xx − x 2
⎢ 1+ x ⎥
⎣
⎦
(
) (
)
1
1
g) D ⎡ln ( ln x ) ⎤ = x =
⎣
⎦ ln x x ⋅ ln x
(
)
1
4 − 2x 2
⎡
⎤ 1 1 −2 x
=
h) D ⎡ln x ⋅ 4 − x 2 ⎤ = D ⎢ln x + ln 4 − x 2 ⎥ = + ⋅
2
⎢
⎥
⎣
⎦
2
x 4 − x2
⎣
⎦ x 2 4−x
(
)
(
)
⎡ 1+ x ⎤
−1
1
2
i) D ⎢ln
⎥ = D ⎡ln (1+ x ) − ln (1− x ) ⎤ = 1+ x − 1− x = 1− x 2
⎣
⎦
⎣ 1− x ⎦
19. Las derivadas quedan:
a) D [ sen4 x ] = 4 ⋅ cos 4 x
b) D [ 4 sen x ] = 4 ⋅ cos x
⎡
x
⎛ x ⎞⎤ 1
c) D ⎢sen ⎜ ⎟ ⎥ = cos
4
⎝ 4 ⎠⎦ 4
⎣
224
⎡
4
⎛ 4 ⎞⎤
⎛4⎞
d) D ⎢ sen ⎜ ⎟ ⎥ = − 2 ⋅ cos ⎜ ⎟
x ⎠⎦
x
⎝
⎝x⎠
⎣
e) D ⎡ sen x 4 ⎤ = 4 x 3 ⋅ cos x 4
⎣
⎦
4
f) D ⎡ sen4 x ⎤ = D ⎡( sen x ) ⎤ = 4 ⋅ sen3 x ⋅ cos x
⎣
⎦
⎣
⎦
g) D ⎡arc sen x − 1⎤ =
⎣
⎦
h) D ⎡sen x ⎤ =
⎣
⎦
−4
i) D ⎡ 4 sen x ⎤ =
⎣
⎦
1
2 ⋅3x − 2 − x 2
( )
−4 ⋅ cos x −4
x
5
cos x
4 4 sen3 x
j) D ⎡cos ( x + 1) ⎤ = − sen (x + 1)
⎣
⎦
(
)
(
)
(
)
k) D ⎡cos3 x 3 + 1 ⎤ = − 9 x 2 ⋅ cos2 x 3 + 1 ⋅ sen x 3 + 1
⎣
⎦
l) D ⎡arc tg (2 x + 1)2 ⎤ =
⎣
⎦
(
)
4x + 2
8 x + 16 x 3 + 12 x 2 + 4 x + 1
4
2x
m) D ⎡ tg x 2 + 2 ⎤ =
⎣
⎦ cos2 x 2 + 2
(
)
n) D tg x =
(
)
1
2 x ⋅cos2 x
3 tg2 ( x + 1)
ñ) D ⎡ tg3 ( x + 1)⎤ =
⎣
⎦ cos2 ( x + 1)
o) D [arc cos (ln x )] =
−1
x ⋅ 1− ln2 x
3 x ⋅ ln 3
p) D ⎡ tg (3 x )⎤ =
⎣
⎦ cos2 3 x
1
q) D ⎡ tg x ⎤ =
⎣
⎦ 2 cos2 x ⋅ tg x
225
20. Las derivadas quedan:
a) D [f (x)] =
2x 4 − 1
x 2 1+ 2 x 2
⇒ D [f (1)] =
1
3
c) D [ h (x)] = 12 sen 3 x ⋅ cos 3 x ⇒ D [ h (π)] = 0
b) D [ g (x)] =
d) D [ j (x)] =1
4 + x2
2 x ⋅ ln 2
(2
x
)
+1
2
⇒ D [ g (0)] =
1
2
⇒ D [ j ( − 1)] =
2 ln 2
9
21. El estudio en cada caso queda:
•
f ( x ) = 2x 4 + 3 x 3 + x 2 − ax + 5 ⇒ D [f ( x )] = 8 x 3 + 9 x 2 + 2x − a ⇒ D [f (1)] = 19 − a = − 3 ⇒ a = 22
•
g(x ) =
x2 − x − a
x 2 + 2x + a − 1
2+a
⇒ D [g ( x )] =
⇒ D [g (1)] =
=0 ⇒ a=− 2
2
x +1
4
( x + 1)
226PÁGINA 295
227
SOLUCIONES
22. Las derivadas quedan:
a) D ⎡(1− x ) 1+ x ⎤ = − 1 1+ x +
⎣
⎦
1− x
2 1+ x
=
−1− 3 x
2 1+ x
b) D ⎡( x 2 − 1) ⋅ 52 x ⎤ = 2 x ⋅ 52 x + 52 x ⋅ ln 5 ⋅ 2 ⋅ ( x 2 − 1)
⎣
⎦
c) D ⎡2 x ⋅ ln 2⎤ = 2 x ⋅ (ln 2)2
⎣
⎦
⎡ ⎛ 1+ sen x ⎞ ⎤
−cos x
cos x
2
−
=
d) D ⎢ln ⎜
⎟⎥ =
⎣ ⎝ 1− sen x ⎠ ⎦ 1+ sen x 1− sen x cos x
e) D ⎡ x 2 ln x + x ln x 2 ⎤ =...
Regístrate para leer el documento completo.