bachiller
Los números racionales son aquellos números que pueden ser expresados como una relación entre dos enteros. Por ejemplo, las fracciones 1/3 y –1111/8 ambas son números racionales. Todos los enteros están incluídos en los números racionales, ya que cualquier entero z puede ser escrito como la relación z/1.
Todos los decimales que terminan son números racionales (yaque 8.27 puede ser escrito como 827/100.) Los decimales que tienen un patrón repetitivo después de algún punto también son racionales: por ejemplo,
0.083333333... = 1/12.
El conjunto de números racionales es cerrado bajo las 4 operaciones básicas, esto es, dados cualesquiera dos números racionales, su suma, diferencia, producto, y cociente también es un número racional (siempre que nodividamos entre 0.)
Los números irracionales
Un número irracional es un número que no puede ser escrito como una relación (o fracción). En forma decimal, nunca termina o se repite. Los antiguos griegos descubrieron que no todos los números son racionales; hay ecuaciones que no pueden ser resueltas usando relaciones de enteros.
La primera ecuación a ser estudiada fue 2 = x2. Qué número por símismo es igual a 2?
La es alrededor de 1.414, porque 1.4142 = 1.999396, que está cerca de 2. Pero Usted nunca lo hallará elevando al cuadrado una fracción (o decimal terminante). La raíz cuadrada de 2 es un número irracional, que significa que su decimal equivalente continua por siempre, con ningún patrón repetitivo:
Nota histórica:
De acuerdo a la leyenda, los antiguos matemáticosgriegos que probaron que NO podría ser escrito como una relación de enteros p/q hicieron enojar tanto a sus colegas, que los pusieron en un barco y los ahogaron!
Otros números irracionales famosos son la Relación Dorada, un número con gran importancia en la biología:
π (pi), la relación de la circunferencia de un círculo a su diámetro:
π = 3.14159265358979...
y e, el número másimportante en calculo:
e = 2.71828182845904...
Los números irracionales pueden ser subdivididos aún más en números algebraicos, que son las soluciones de alguna ecuación polinomial (como la y la Relación Dorada), y los números transcendentales, que no son las soluciones de cualquier ecuación polinomial. π y e ambos son transcendentales.
Los números reales
Los números reales es elconjunto de números que consiste de todos los números racionales y de todos los números irracionales. Los números reales son “todos los números” en la recta numérica. Hay infinitamente muchos números reales así como hay infinitamente muchos números en cada uno de los otros conjuntos de números. Pero, puede probarse que el infinito de los números reales es un infinito muy grande.
El "más pequeño", oinfinito contable de los enteros y racionales es algunas veces llamado 0 (alef-naught), y el infinito incontable de los reales es llamado 1 (alef-one).
Hay incluso infinitos "más grandes", pero debe tomar una clase de teoría de conjuntos para eso!
Operaciones en el conjunto de los números reales
Con números reales pueden realizarse todo tipo de operaciones básicas con dos excepcionesimportantes:
No existen raíces de orden par (cuadradas, cuartas, sextas, etc.) de números negativos en números reales, (aunque sí existen en el conjunto de los números complejos donde dichas operaciones sí están definidas).
La división entre cero no está definida (pues cero no posee inverso multiplicativo, es decir, no existe número x tal que 0·x=1).
Estas dos restricciones tienen repercusionesen otras áreas de las matemáticas como el cálculo: existen asíntotas verticales en los lugares donde el denominador de una función racional tiende a cero, es decir, en aquellos valores de la variable en los que se presentaría una división entre cero, o no existe gráfica real en aquellos valores de la variable en que resulten números negativos para raíces de orden par, por mencionar un ejemplo de...
Regístrate para leer el documento completo.