Binomio De Newton

Páginas: 5 (1040 palabras) Publicado: 8 de noviembre de 2012
BINOMIO DE NEWTON

INTRODUCCION.-
Atribuido a Newton, el teorema fue en realidad descubierto por primera vez por Abu HYPERLINK "http://es.wikipedia.org/wiki/Al-Karaji"BekrHYPERLINK "http://es.wikipedia.org/wiki/Al-Karaji" ibn Muhammad ibn al-Husayn al-HYPERLINK "http://es.wikipedia.org/wiki/Al-Karaji"Karaji alrededor del año 1000.Aplicando los métodos de John Wallis de interpolación yextrapolación a nuevos problemas, Newton utilizó los conceptos de exponentes generalizados mediante los cuales una expresión polinómica se transformaba en una serie infinita. Así estuvo en condiciones de demostrar que un gran número de series ya existentes eran casos particulares, ya fuera diferenciación o bien por integración.
El descubrimiento de la generalización de la serie binómica es un resultadoimportante de por sí; sin embargo, a partir de este descubrimiento Newton tuvo la intuición de que se podía operar con series infinitas del mismo modo que con expresiones polinómicas finitas.
Newton no publicó nunca el teorema del binomio. Lo hizo Wallis por primera vez en 1685 en su Algebra, atribuyendo a Newton este descubrimiento.
En álgebra, un binomio es una expresión algebraica con dostérminos. Estrictamente hablando se refiere a un polinomio formado por la suma de dos monomios, aunque se usa de forma más fácil para indicar cualquier expresión que consta de una suma o resta de dos términos.
al efectuar productos con binomios que tienen los mismos términos podemos obtener lo siguiente: (a+b)²= (a+b)(a+b)
Bajo la definición estricta, son binomios las expresiones:

mientras que nolo son expresiones tales como:

puesto que alguno de sus términos no es un monomio, aunque en un contexto más informal podría llamarse binomio a cualquier expresión que involucre una suma o resta de dos expresiones. Así, es posible encontrar en un libro de álgebra un ejercicio en la sección de "binomios al cuadrado" que diga «Calcula el resultado de (cos(x)+sen(x))2».
El teorema del binomio,descubierto hacia 1664-1665, fue comunicado por primera vez en dos cartas dirigidas en 1676 a Henry Oldenburg (hacia 1615-1677), secretario de la Royal Society que favorecía los intercambios de correspondencia entre los científicos de su época. En la primera carta, fechada el 13 de junio de 1676, en respuesta a una petición de Leibniz que quería conocer los trabajos de matemáticos ingleses sobreseries infinitas, Newton presenta el enunciado de su teorema y un ejemplo que lo ilustra, y menciona ejemplos conocidos en los cuales se aplica el teorema. Leibniz responde, en una carta fechada el 17 de agosto del mismo año, que está en posesión de un método general que le permite obtener diferentes resultados sobre las cuadraturas, las series, etc., y menciona algunos de sus resultados. Interesadopor las investigaciones de Leibniz, Newton le responde también con una carta fechada el 24 de octubre en la que explica en detalle cómo ha descubierto la serie binómica.
Aplicando los métodos de Wallis de interpolación y extrapolación a nuevos problemas, Newton utilizó los conceptos de exponentes generalizados mediante los cuales una expresión polinómica se transformaba en una serie infinita.Así estuvo en condiciones de demostrar que un buen número de series ya existentes eran casos particulares, bien directamente, bien por diferenciación o integración.
El descubrimiento de la generalización de la serie binómica es un resultado importante de por sí; sin embargo, a partir de este descubrimiento Newton tuvo la intuición de que se podía operar con series infinitas de la misma manera quecon expresiones polinómicas finitas. El análisis mediante las series infinitas parecía posible, porque ahora resultaban ser una forma equivalente para expresar las funciones que representaban.
Newton no publicó nunca el teorema del binomio. Lo hizo Wallis por primera vez en 1685 en su Algebra, atribuyendo a Newton este descubrimiento

MARCO TEORICO.-
Vamos a deducir la fórmula que nos...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Binomio de newton
  • Binomio de newton
  • binomio de newton
  • Binomio de Newton
  • Binomio de Newton
  • Binomio De Newton
  • El Binomio De Newton
  • Binomio De Newton

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS