Binomios

Páginas: 2 (326 palabras) Publicado: 26 de septiembre de 2013
Binomios Conjugados
Cuando se tiene un producto de dos binomios los cuales tienen los mismos monomios excepto porque el signo de uno de los monomios es diferente para ambos a eseproducto se le conoce como binomios conjugados y tiene la forma:
(a + b)(a - b)
Si desarrollamos el producto tenemos:
(a + b)(a - b) = (a)(a) + (a)(-b) + (b)(a) + (b)(-b)
(a + b)(a - b) =aa - ab + ba - bb
(a + b)(a - b) = a2 - b2
Lo que se obtiene es el primer monomio elevado al cuadrado con signo positivo y el segundo monomio elevado al cuadrado con signo negativo.Esto se conoce como diferencia de cuadrados. Esta identidad se puede usar en cualquier caso en que se tengan binomios conjugados.
Ejemplo. Obtener el producto de 2x2 + y y 2x2 - y.
Usandola identidad se tiene que:
(2x2 + y)(2x2 - y) = (2x2)2 - (y)2
(2x2 + y)(2x2 - y) = 4x4 - y2

Binomio con un termino comun
El producto de dos binomios del tipo es igual al cuadradodel primer término, más el producto de la suma de los dos segundos términos por el primer término, más el producto de los segundos términos.

Se trata de demostrar que .
Tendremos que:Es decir , tal como queríamos demostrar.

Binomio al cubo
Un binomio al cubo (suma) es igual al cubo del primero, más el triple del cuadrado del primero por el segundo, más eltriple del primero por el cuadrado del segundo, más el cubo del segundo.
(a + b)3 = a3 + 3 · a2 · b + 3 · a · b2 + b3
(x + 3)3 = x 3 + 3 · x2 · 3 + 3 · x· 32 + 33 =
= x 3 + 9x2 + 27x + 27Binomio de resta al cubo
Un binomio al cubo (resta) es igual al cubo del primero, menos el triple del cuadrado del primero por el segundo, más el triple del primero por el cuadrado delsegundo, menos el cubo del segundo.
(a − b)3 = a3 − 3 · a2 · b + 3 · a · b2 − b3
(2x − 3)3 = (2x)3 − 3 · (2x)2 ·3 + 3 · 2x· 32 − 33 =
= 8x 3 − 36 x2 + 54 x − 27
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Binomio
  • Binomios
  • Binomios
  • binomio
  • Binomios
  • binomios
  • Binomios
  • binomios

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS