Buenas Tareas
Primero hay que determinar el factor común de los coeficientes junto con el de las variables (la que tenga menor exponente). Se toma en cuenta aquí que el factor común nosolo cuenta con un término, sino con dos.
un ejemplo:
Se aprecia claramente que se está repitiendo el polinomio (x-y), entonces ese será el factor común. El otro factor será simplemente lo que quedadel polinomio original, es decir:
La respuesta es:
En algunos casos se debe utilizar el número 1, por ejemplo:
Se puede utilizar como:
Entonces la respuesta es:
Caso II - Factor comúnpor agrupación de términos
Para trabajar un polinomio por agrupación de términos, se debe tener en cuenta que son dos características las que se repiten. Se identifica porque es un número par detérminos.
Un ejemplo numérico puede ser:
entonces puedes agruparlos de la siguiente manera:
Aplicamos el caso I (Factor común)
Caso III - Trinomio Cuadrado Perfecto
Se identifica portener tres términos, de los cuales dos tienen raíces cuadradas exactas, y el restante equivale al doble producto de las raíces del primero por el segundo. Para solucionar un Trinomio Cuadrado Perfectodebemos reordenar los términos dejando de primero y de tercero los términos que tengan raíz cuadrada, luego extraemos la raíz cuadrada del primer y tercer término y los escribimos en un paréntesis,separándolos por el signo que acompaña al segundo término, al cerrar el paréntesis elevamos todo el binomio al cuadrado.
Ejemplo 1:
Ejemplo 2:
Ejemplo 3:
Ejemplo 4:
Organizando los términostenemos
Extrayendo la raíz cuadrada del primer y último término y agrupándolos en un paréntesis separados por el signo del segundo término y elevando al cuadrado nos queda:
Al verificar que eldoble producto del primero por el segundo término es -20xy determinamos que es correcta la solución. De no ser así, esta solución no aplicaría.
Caso IV - Diferencia de cuadrados
Se identifica...
Regístrate para leer el documento completo.