buenas tareas

Páginas: 6 (1489 palabras) Publicado: 26 de mayo de 2014
Polinomios
polinomio de grado 7coordenadas cartesianas
En matemáticas, un polinomio (del latín polynomius, y este del griego, πολυς [polys] ‘muchos’ y νόμος [nómos] ‘regla’, ‘prescripción’, ‘distribución’)1 2 3 es una expresión matemática constituida por un conjunto finito de variables (no determinadas o desconocidas) y constantes (números fijos llamados coeficientes), utilizando únicamentelas operaciones aritméticas de suma, resta y multiplicación, así como tambiénexponentes enteros positivos. En términos más precisos, es una relación n-aria de monomios, o una sucesión de sumas y restas de potencias enteras de una o de varias variables indeterminadas.
Es frecuente el término polinómico (ocasionalmente también el anglicism o polinomial), como adjetivo, para designar cantidades quese pueden expresar como polinomios de algún parámetro, como por ejemplo: tiempo polinómico, etc.
Los polinomios son objetos muy utilizados en matemáticas y en ciencia. En la práctica, son utilizados en cálculo y análisis matemático para aproximar cualquier función derivable; lasecuaciones polinómicas y las funciones polinómicas tienen aplicaciones en una gran variedad de problemas, desde lamatemática elemental y el álgebra hasta áreas como la física,química, economía y las ciencias sociales.
En álgebra abstracta, los polinomios son utilizados para construir los anillos de polinomios, un concepto central en teoría de números algebraicos y geometría algebraica.
Índice
  [ocultar] 
1 Definición algebraica
1.1 Polinomios de una variable
1.2 Polinomios de varias variables
1.3 Grado de unpolinomio
2 Operaciones con polinomios
3 Funciones polinómicas
3.1 Ejemplos de funciones polinómicas
4 Factorización de polinomios
5 Historia
6 Véase también
7 Referencias
8 Enlaces externos
Definición algebraica[editar]
Los polinomios están constituidos por un conjunto finito de variables (no determinadas o desconocidas) y constantes (llamadas coeficientes), con las operacionesaritméticas de suma, resta y multiplicación, así como también exponentes enteros positivos. Pueden ser de una o de varias variables.
Polinomios de una variable[editar]
Para a0, …, an constantes en algún anillo A (en particular podemos tomar un cuerpo, como o , en cuyo caso los coeficientes del polinomio serán números) con an distinto de cero y , entonces un polinomio, , de grado n en la variable x es unobjeto de la forma
 
Un polinomio  no es más que una sucesión matemática finita  tal que .
Representado como:

el polinomio se puede escribir más concisamente usando sumatorios como:

Las constantes a0, …, an se llaman los coeficientes del polinomio. A a0 se le llama elcoeficiente constante (o término independiente) y a an, el coeficiente principal. Cuando el coeficiente principal es 1, alpolinomio se le llama mónico o normalizado.
Polinomios de varias variables[editar]
Como ejemplo, de polinomios de dos variables desarrollando los binomios:
(2)
Estos polinomios son mónicos, homogéneos, simétricos y sus coeficientes son coeficientes binomiales.
Para obtener la expansión de las potencias de una resta (véase productos notables), basta con tomar -y en lugar de y en el casoanterior. La expresión (2) queda de la siguiente forma:

Los polinomios de varias variables, a diferencia de los de una variable, tienen en total más de una variable. Por ejemplo los monomios:

En detalle el último de ellos  es un monomio de tres variables (ya que en él aparecen las tres letras x, y y z), el coeficiente es 4, y los exponentes son 1, 2 y 1 de x, y y zrespectivamente.
Grado de unpolinomio[editar]
Artículo principal: Grado (polinomio)
Se define el grado de un monomio como el mayor exponente de su variable. El grado de un polinomio es el del monomio de mayor grado.
Ejemplos
P(x) = 2, polinomio de grado cero (el polinomio solo consta del término independiente).
P(x) = 3x + 2, polinomio de grado uno.
P(x) = 3x² + 2x², polinomio de grado dos.
P(x) = 2x3+ 3x + 2,...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Buenas tareas
  • Buenas tareas
  • Buenas Tareas
  • Tareas Buenas
  • Buenas tareas
  • Tareas buenas
  • Buenas tareas
  • Buenas tareas

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS