cacas
1. Sean los conjuntos:
2. A = {0, } y B = {0, {}, {0, } }
3. Entonces el conjunto: E = P(A) P(B)
4. es equivalente a:
5. A) {0, } B) {0, {} }
6. C) {0, {0}, {} } D) {0, {0}. , {} }
7. Dados los conjuntos: A = { x ∈ N / x es múltiplo de 2 } y B = { x ∈ N / x es múltiplo de 3 } entonces, se puede afirmar que :
8. a) A ∪ B = {múltiplos de 5}9. b) A ∩ B = {múltiplos de 5}
10. c) A ∪ B = {múltiplos de 6}
11. d) A ∩ B = {6, 12, 18, 24}
12. e) A - B = {−1}
13. Dados los conjuntos:
14. H = {x ∈ Z / x - 2 = 0}, I = {x ∈ Z / 2x - 6 = 0}
15. J = {x ∈ Z / 2 < x < 3}
16. Entonces es verdadero que:
17. I. La cardinalidad de H e I es la misma
18. II. H ∪ I = J
19. III. H ∩ I = J
20. Si A ∪ B = U, entonces, es siempreverdadero que :
21. a) B = A'
22. b) B = A - B
23. c) A ∩ B = φ
24. d) (A ∪ B)' = φ
25. Si el conjunto A tiene 5 elementos, el conjunto B tiene 3 elementos, y además se sabe que (A ∩ B) tiene 2 elementos entonces, ¿cuál es la cardinalidad de (A∪B)?
26. Dados los conjuntos: A = {x ∈ N / x < 3} y B = {x ∈ N / x + 1 = 3 }
27. Entonces ellos verifican que:
28. a) A ∩ B =2
29. b) A ∩ B = {1, 2 }
30. c) A ∪ B = {1, 2, 3 }
31. d) A ∩ B = { 2 }
32. Si el conjunto A está dado por: A = {p ∈ ΙN / p es número primo y 1< p < 10}
33. si U = IN, entonces, A' = ?
34. Sean los conjuntos:
35. L = {y N/ 3 < y < 9} y
36. M = { y N/ 5 < y < 12}
37. Entonces el cardinal del conjunto L M, elevado al cuadrado y dividido entre dos,es:
38. A) 10, 5 B) 11 C) 11,5 D) 12 E) 12,5
39. Si:
40. n(E) = 200 n(A B) = 36
41. n(A) = 80 n(A C) = 34
42. n(B) = 82 n(B C) = 32
43. n(C) = 78 y n[(A B) – (A C)] = 21
44. Calcular: A B C
45. A) 4 B) 5 C) 7 D) 11 E) 13
46. Si n(A) significa: número de elementos del conjunto A y siendo A y B, 2 conjuntos tales que: n(A B) = 30, n(A – B) = 12 y n(B – A) = 8.Hallar el valor de 5n(A) – 4n(B).
47. A) 34 B) 36 C) 38 D) 40 E) 28
48. Dados los conjuntos:
49. M = {y3 / y N; 2 y < 6} ;
50. N = {3y + 1/y z; – 2 y < 3}
51. y L = M N, entonces la expresión n[P(L)] es equivalente a:
52. A) 2 B) 3 C) 4 D) 5
53. ¿Cuáles de las siguientes proposiciones son verdaderas?
54. I) Dos conjuntos equivalentes son iguales.
55. II)El cardinal delconjunto vacío es cero.
56. III)La intersección de dos conjuntos ajenos es {0}
57. IV)Si A y B son disjuntos, entonces n[P(A B)] = 1
58. A) Sólo I y II B) Sólo I, II y III
59. C) Sólo II y IV D) Sólo II, III y IV
60. Si:
61. A = {x Z+/ x [2, 7]} y
62. B = {y Z+/ y [0, 6> }
63. Entonces el cardinal del conjunto:
64. P[P(A B)], es:
65. A) 1 B) 2 C) 4 D)16
66.
67. La siguiente región sombreada:
68.
69.
70.
71.
72.
73.
74. es equivalente a:
a) (A B) (C – D)
b) (B – A) (C D)
c) (B – A) (C D)
d) (B – A) (C D)
75. Si: U = {x/x Z y 0 x < 10}
76. (A B)’ = {0; 6; 9},A B = {1; 2; 7} y
77. A – B = {3; 5};entonces el número total de subconjuntos de (B – A) es:
78. A) 2 B) 3 C) 4 D) 8
79.Si: U = {números naturales}
80. A = {x/x 10}, B = {y/y 8} y
81. C = {Z / Z 12}; Entonces la expresión:
82. [(C’ A) – (A B’)] es equivalente a:
83. A) {6, 7, 8, 9, 10} B) {7,8,9,10}
84. C) {8, 9, 10} D) {9, 10}
85. Sean los conjuntos:
86. A = {5; 8}
87. B = {x/x es impar y 2 < x < 12} y
88. C = {n2 – 1/n Z y 1 n < 5}
89. Entonces el número total desubconjuntos que tiene (C – B) A es:
90. A) 4 B) 8 C) 16 D) 32
91. Dados los conjuntos P, Q y R
92. n (P Q) = 40
93. n(P R) = 70
94. n (Q R) = 60
95. n[(P Q) (Q R) (P R)] = 100
96. Hallar: n(P Q R)
97. A) 40 B) 30 C) 45 D) 42 E) 35
98. Dados los conjuntos : A = { 1,2 } B = { 2,3,4 } y C = { 2 }. ¿Cuántos subconjuntos tiene (A ∩ B ∩ C)
99. es...
Regístrate para leer el documento completo.