Calculo

Páginas: 2 (388 palabras) Publicado: 7 de mayo de 2012
gacetilla matematica teorema del coseno

Página 1 de 2

Distancia geográfica entre dos puntos de la Tierra Como la Tierra es, aproximadamente una esfera podemos aplicar los conceptos de latrigonometría esférica para calcular la distancia entre dos puntos. Cada punto M de la Tierra está localizado por sus coordenadas geográficas: longitud y latitud Se denomina longitud del punto M lagraduación del arco AB (medido sobre el ecuador, siendo G el meridiano de Greenwich o meridiano origen). Se determina la posición indicando si está al Este (+) o al Oeste (-). El arco BM determina la latituddel punto M. Se determina la posición si está al Norte (+) o al Sur (-) del Ecuador. Ejemplo 1 Calcular la distancia geográfica entre dos puntos A y B cuyas coordenadas geográficas son A(logn; latd) =A(55º 45´ 13´´ E; 55º 48´ 10´´ N) B(long; latd) = B(48º 50´ 2´´ E; 20º 30´ 40´´ N).

Si consideramos el triángulo esférico PBA, tendremos: a = PB = 90º - 48º 50´ 2´´ = 41º 9´ 58´´ b = PA = 90º - 55º45´ 13´´ = 34º 14´ 47´´ P = 55º 48´ 10´´ - 20º 30´ 40´´ = 35º 17´ 30´´ Aplicando el teorema del coseno de la trigonometría esférica (fórmulas de Bessell) resulta cos(p) = cos(a) cos(b) +sen(a)sen(b)cos(P) y para el caso que nos ocupa cos(p) = 0,925 de donde p = 22,386º = 22º 23´ 9.6´´ Mediante una proporción (a 360º corresponden los 40000 km de longitud de un cículo máximo) resulta que ambospuntos están separados por 2487,333 km. Ejemplo 2 Las coordenadas geográficas de Sevilla y Buenos Aires son S(long;latd) = (5º 59´ 13´´ (-); 37º 22´ 38´´ (+)) (Sevilla) B(long;latd) = (58º 22´ (-); 34º36´ (-)) (Buenos Aires)

http://www.arrakis.es/~mcj/notas013.htm

11/04/2008

gacetilla matematica teorema del coseno

Página 2 de 2

En el triágulos esférico PBS resulta: s = 90º - 37º 22´38´´ = 52º 37´ 22´´ b = 90º + 34º 36´ = 124º 36´ P = 58º 22´ - 5º 59´ 13´´ = 52º 22´ 47´´ Volviendo a aplicar el teorema del coseno cos(p) = cos(s)cos(b) + sen(s)sen(b)cos(P) = 0.055 de donde p =...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Calculo
  • Calculo
  • Calculos
  • Calculo
  • Calculo
  • Calculo
  • Calculo
  • Calculo

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS