calculo
NOCION INTUITIVA DE CONJUNTO
Un conjunto es la reunión en un todo de objetos bien definidos y diferenciables entre si, que se llaman elementos del mismo.
Sia es un elemento del conjunto A se denota con la relación de pertenencia a A.
En caso contrario, si a no es un elemento de A se denota a A.
Ejemplos de conjuntos:
: el conjunto vacío, quecarece de elementos.
N: el conjunto de los números naturales.
Z: el conjunto de los números enteros.
Q : el conjunto de los números racionales.
R: el conjunto de los números reales.
C: el conjuntode los números complejos.
Se puede definir un conjunto:
por extensión, enumerando todos y cada uno de sus elementos.
por comprensión, diciendo cuál es la propiedad que los caracteriza.
Unconjunto se suele denotar encerrando entre llaves a sus elementos, si se define por extensión,
o su propiedad característica, si se define por comprensión. Por ejemplo:
A := {1,2,3, ... ,n}
B := {p Z| p es par}
Se dice que A está contenido en B (también que A es un subconjunto de B o que A es una parte de B),
y se denota A B, si todo elemento de A lo es también de B, es decir, a A a B.Dos conjuntos A y B se dicen iguales, y se denota A = B, si simultáneamente A B y B A;
esto equivale a decir que tienen los mismos elementos (o también la misma propiedad característica).
Paracualquier conjunto A se verifica que A y A A;
B A es un subconjunto propio de A si A y B A.
El conjunto formado por todos los subconjuntos de uno dado A se llama partes de A, y se denota (A).
Entonces, la relación B A es equivalente a decir B (A). Ejemplos:
Si A = {a,b} entonces (A) = {,{a},{b},A}.
Si a A entonces {a} (A).
Cuando en determinado contexto se consideransiempre conjuntos que son partes de uno dado U,
se suele considerar a dicho U como conjunto universal o de referencia.
Los Números Reales
La unión de los racionales y los irracionales forma...
Regístrate para leer el documento completo.