Calculo
Sete páginas e 34 limites resolvidos Usar o limite fundamental e alguns artifícios :
lim senx =1 x
x→0
0 x x lim = , é uma indeterminação. =? à x →0 sen x x → 0 sen x 0 x 1 1 x lim = lim = = 1 logo lim =1 sen x x →0 sen x x →0 sen x x → 0 sen x lim x→0 x x sen 4 x sen 4 x sen 4 x 0 sen y à lim 4. = 4. lim = ? à lim = =4.1= 4 2. lim x →0 y →0 x→0 x→0 0 4xy x x sen 4 x lim =4 x→0 x sen 5 x 5 sen 5 x 5 sen y 5 sen 5 x = ? à lim . logo lim 3. lim = lim . = x →0 2 x x →0 2 y →0 2 x →0 2 x y 5x 2 1. lim 4. lim
x →0
logo
=
5 2
x →0
sen mx = nx
? à lim
5. lim
3 2
sen 3 x x →0 sen 2 x
=? à logo ? à
6. lim
senmx = x → 0 sennx lim
sen mx m = nx n sen y sen 3 x sen 3 x sen 3 x lim 3. lim y →0 sen 3 x y 3 3 x = . x →0 3 x= 3 . lim = lim x = lim = .1 = sen t sen 2 x 2 x →0 sen 2 x x → 0 sen 2 x x→0 sen 2 x 2 lim lim 2. x→0 2 x t →0 t x 2x sen 3 x 3 lim = x →0 sen 2 x 2 sen mx sen mx sen mx m. sen mx m mx m mx = lim . lim = lim x = lim = Logo sen nx x →0 sen nx x →0 n sen nx x → 0 sen nx x →0 n n. nx nx x
x →0
sen mx m sen mx = lim . x→0 n nx mx
=
sen y m . lim n y →0 y
=
m m .1= n n
logo lim
ww w
.L
ib
s ro
Q
o .c
m
x→0
senmx m = sennx n
7.
8.
sen x 0 tgx tgx tgx sen x 1 lim = ? à lim = = lim cos x = lim . = à lim x→ 0 x x→ 0 x x→ 0 x x→ 0 x → 0 cos x x 0 x tgx sen x 1 sen x 1 =1 lim . = lim . lim = 1 Logo lim x→ 0 x→ 0 x → 0 cos x x→ 0 x x cos x x x → 1 0 tg (t ) tg a 2 − 1 tg a 2 − 1 = ? à lim 2 = lim à Fazendo t = a 2 − 1, à lim =1 a →1 a 2 −1 a →1 a − 1 t →0 t 0 t → 0
(
)
(
)
logo lim
tg a 2 − 1 a −1
2
(
a →1
) =1
Limites Trigonométricos Resolvidos
Sete páginas e 34 limites resolvidos 9. lim
x − sen 3 x x + sen 2 x
x →0
= ? à lim
x →0
x − sen 3 x x + sen 2 x
=
0 0
à f (x ) =
x − sen 3 x x + sen 2 x
=
sen 3 x x.1 − x = sen 5 x x.1 + x
sen 3 x sen 3 x sen 3 x x.1 − 3. 1 − 3. 1 − 3. 3. x 3. x 3.x = 1 − 3 = −2 = − 1 logo = à lim sen 5 x sen 5 x x →0 sen 5 x 1+ 5 6 3 1 + 5. 1 + 5. x.1 + 5. 5. x 5. x 5. x x − sen 3 x 1 lim =− x →0 x + sen 2 x 3 1 sen x 1 sen 2 x 1 tgx − sen x tgx − sen x 10. lim = ? à lim = lim = . . . 3 3 x →0 x →0 x→0 x cos x x 2 1 + cos x 2 x x sen x − sen x. cos x sen x − sen x tgx − sen x cos x senx.(1 − cos x ) sen x 1 1 − cos x cos x . . f (x ) = = = = = 3 3 3 x x 2 cos x x 3 . cos x x x x sen x 1 1 − cos x 1 + cos x . . . x x 2 cos x 1 + cos x tgx − sen x 1 Logo lim = x →0 2 x3
=
=
sen x 1 1 − cos 2 x 1 . . . 2 x cos x 1 + cos x x
=
11. lim
1 + tgx − 1 + sen x x
3 2
x →0
=? à
lim
tgx − sen x
x →0
sen x 1 sen x 1 1 lim . . . . 2 x →0 x cos x x 1 + cos x1 + tgx + 1 + sen x f (x ) = lim 1 + tgx − 1 + senx x
3 3
=
1 4
1 + tgx − 1 − sen x x
3
w
w w
.
i .L
x
b
3
Q 1 os. 1 + tgx + 1 + sen x = r
= 1. . . . =
1 1 1 1 1 1 1 2 2 1 4 tgx − sen x x
3
o .c
m
1 sen x 1 sen 2 x . . . x cos x x 2 1 + cos x
1 + tgx + 1 + sen x
=
.
1 1 + tgx + 1 + sen x
1 + tgx − 1 + sen x x
x →0
=
12. lim
x→asen x − sen a x−a
= ? à lim
x→a
sen x − sen a x−a
=
x−a x+a 2 sen . cos 2 2 = lim x→a x−a 2. 2
x − a . cos x + a ) 2 2 . lim x→a 1 x−a 2. 2 2 sen(
= cos a
Logo lim
sen x − sen a x→a x−a
= cosa
Limites Trigonométricos Resolvidos
Sete páginas e 34 limites resolvidos 13. lim
sen ( x + a ) − sen x a
a →0
= ? à lima →0
sen ( x + a ) − sen x a
=
x+a−x x+a+ x 2 sen . cos 2 2 . lim a→a 1 x−a 2. 2 sen ( x + a ) − sen x a
=
a 2x + a 2 sen . cos 2 2 . = cos x lim a→a 1 a 2. 2
Logo lim
a →0
=cosx
14.
x+a+ x x−a− x − 2 sen . sen cos( x + a ) − cos x cos( x + a ) − cos x 2 2 lim = ? à lim = lim a →0 a→0 a→0 a...
Regístrate para leer el documento completo.