Campo gravitacional de modelado de bases de la grace
La GRACE misión de satélite fue en marzo de 2002 principalmente con el propósito de la cartografía de alta precisión del campo gravitatorio de la Tierra.
La misión se compone de dos satélites co-orbitando sobre 480 kilómetros altitud con un longitud 220 ± 50 km Separación. Los satélites están equipados con un Banda K que van (KBR), sistemade medición, gracias a la que el intervalo inter-satélite de las tasas puede ser continuamente determinado con una precisión superior de 0,5? m / s (Biancale et al., 2005). Otra de las importantes los sensores a bordo son: (i) los receptores GPS necesitan para determinar las órbitas de satélites y para sincronizar etiquetas de tiempo de las mediciones de KBR de los dos satélites, (ii) losacelerómetros, que la aceleración gravitacional medida por satélite, y (iii) estrella cámaras necesarias para determinar las actitudes de satélite.
Un número de modelos funcionales para el procesamiento de datos de GRACE KBR ya se han propuesto y aplicado, por ejemplo, enfoque de la ecuación variacional (Tapley et al., 2004; Reigber et al., 2005), el enfoque de balance de energía (Jekeli, 1999; Han etal., 2005b), el enfoque de aceleración (Rummel, 1979), el enfoque basado en la integración de corto arcos (Estirpe et al., 2003) y el enfoque gradiometry (Keller y Sharifi, 2005).
En el documento, se propone un nuevo enfoque de la gravedad modelado de terreno, que se basa en las llamadas amplia combinación de velocidad. La estructura del documento es la siguiente. En la Sección. 2, se presentanlos fundamentos teóricos del enfoque propuesto. En la Sección.3, abordamos algunas cuestiones de aplicación. Para comprobar el enfoque, un conjunto de datos de gracia es simulado y procesado (art. 4). A continuación, el proceso 101-días conjunto de datos de verdadera GRACE (art. 5). Por último, las conclusiones se dan y las perspectivas de futuro se trata.
Funcional Model
El modelo funcionalhace uso de un marco local en cada época en particular En el marco, el eje X se define como la línea de visión, el eje Z es ortogonal al eje X en el plano formado por el dos satélites y el centro de la Tierra (es decir, este eje de es de aproximadamente radial) y el eje Y es ortogonal a la X y Z-ejes la formación de un marco de mano derecha (es decir, el tema eje es de cruz-). Con el fin deconstruir de una ecuación de observación, tres épocas sucesivas son considerado (por ejemplo, i - 1, i, y i + 1). Vamos a introducir Inter-satélite aceleraciones promedio entre el las épocas i - 1 y yo (es decir, ¯ gi-) y entre las épocas i e i + 1 (es decir, ¯ gi +) como:
Formula
Donde g (t) es el punto acertado entre de aceleración como una función del tiempo, y T es la velocidad de muestreo.Donde vi-1, vi y vi +1 están entre las velocidades de satélite en tres épocas sucesivas. Las aceleraciones en el lado izquierdo pueden estar relacionadas con el gradiente de potencial gravitatorio, mientras que entre las velocidades de satélite en el lado derecho puede estar relacionado con el rango de las tasas. Como resultado, una combinación lineal de tres tipos de línea sucesiva-di-1, di, di 1pueden estar directamente relacionados con el inter-media de las aceleraciones satélite -gi- y -gi + (Ditmar y Liu, 2006):
Donde ¯ gx i ± ¯ y gz ± i son las X y Z-componente del vector ¯ ± gi en la época de la i, respectivamente; νi, τi, τi +, εi, εi y εi +, lo que se los parámetros de navegación llamado, son funciones de los vectores de la unidad de la IE-1, ei, ei 1 y que definen la línea dedirecciones de vista en las tres épocas sucesivas.
Estrictamente hablando, la ecuación (3) sólo es válido en la Caso 2-D, es decir, si todos los 3 de línea de vectores de la unidad de vista coinciden con los planos orbitales de los satélites. Sin embargo, los datos reales se pueden reducir a la (local) 2-D por caso la aplicación de correcciones a las pequeñas di-1, di y di 1, respectivamente....
Regístrate para leer el documento completo.