Capitulo3

Páginas: 51 (12628 palabras) Publicado: 10 de agosto de 2015
Ejercicios y problemas de Termodinámica I

CAPÍTULO 3º
Segundo principio de la termodinámica. Temperatura termodinámica y entropía.
Principio de aumento de entropía. Ecuación fundamental de la termodinámica.
Ecuaciones TdS.

Resumen de Teoría:
Rendimiento de cualquier máquina térmica:
W Q − Q2
η= = 1
Q1
Q1
Segundo principio de la termodinámica:
Teorema de Carnot: Ninguna máquina operando entredos temperaturas dadas posee
un rendimiento superior al de una máquina de Carnot que funcionase entre las mismas
temperaturas.
Ciclo de Carnot: (T1>T2)
1º Expansión isoterma a T1, Q1>0
2º Expansión adiabática. Q = 0
3º Compresión isoterma a T2, Q2<0
4º Compresión adiabática Q = 0.
Rendimiento de un ciclo de Carnot:

η = 1−

T2
T1

Enunciado de Kelvin-Planck: No es posible ninguna transformacióntermodinámica
cuyo único resultado sea la absorción de calor de un solo foco y la producción de una
cantidad equivalente de trabajo.
Enunciado de Clausius: No es posible ningún proceso espontáneo cuyo único
resultado sea el paso de calor de un recinto a otro de mayor temperatura.
Teorema de Clausius (Entropía): Sea un sistema que verifica una transformación
cíclica durante la cual intercambia calorcon una serie de recintos a las temperaturas
T1,…,Tn. Llamemos Q1,…,Qn las cantidades respectivas de calor intercambiadas por el
sistema, se verifica entonces que:
n
δQ
Q
∆S = ∫ i
∆S = ∑ i
Ti
i Ti
Principio de Caratheodory: Si un sistema se encuentra en un estado equilibrio
térmico, siempre existen otros estados próximos a aquel que no pueden alcanzarse
mediante procesos adiabáticos.

Entropía demezcla:

∆S M = − nR ∑ xi ln xi

42

Julián Moreno Mestre

Ecuaciones de estado de la termodinámica:
⎛ ∂U ⎞
⎛ ∂p ⎞
⎛ ∂U ⎞
⎛ ∂S ⎞
dU = TdS − pdV → ⎜
⎟ =T⎜
⎟ − p → ⎜ ∂V ⎟ = T ⎜ ∂T ⎟ − p

⎠T

⎠V
⎝ ∂V ⎠T
⎝ ∂V ⎠T
⎛ ∂H ⎞
⎛ ∂H ⎞
⎛ ∂S ⎞
⎛ ∂V ⎞
dH = TdS + Vdp → ⎜
⎟ = T ⎜ ⎟ + V → ⎜ ∂p ⎟ = −T ⎜ ∂T ⎟ + V

⎠p

⎠T
⎝ ∂p ⎠T
⎝ ∂p ⎠T
Ecuaciones T·dS:
⎛ ∂V ⎞
TdS = C p dT − T ⎜
⎟ dp → TdS = C p dT − T β Vdp
⎝ ∂T ⎠p


⎛ ∂p ⎞
TdS = CV dT + T ⎜
dV
⎟ dV → TdS = CV dT −
κT
⎝ ∂T ⎠V
C
C ·κ
TdS = λ dV + µ dp → TdS = p dV + V T dp
βV
β
Aplicación a los gases ideales:
dT
dV
dT
dp
dS = CV
+R
dS = C p
−R
T
V
T
p

43

Ejercicios y problemas de Termodinámica I

Problemas:


Para mantener un edificio la temperatura media de 18 ºC, su sistema frigorífico se ve
obligado a extraer de su interior 600.0 cal·s–1,mientras consume un trabajo eléctrico de
1.00 kW. Determinar el incremento de entropía por segundo que sufre el universo debido
al acondicionamiento del edificio sabiendo que el ambiente externo se encuentra a 35 ºC.
Solución: Consideraremos el edificio y el medio como dos focos cuyas temperaturas
permanecen inalterables todo el tiempo, y que sobre ellos trabaja una máquina frigorífica.
Llamemos Q1 alcalor por unidad de tiempo extraído por la máquina del edificio, W al

trabajo consumido por unidad de tiempo, y Q2 al calor total producido por unidad de
tiempo. Por tanto:
Q2 = Q1 + W = 600 cal/s + 1000 J/s = 839.2 cal/s
La entropía por unidad de tiempo perdida por el edificio y cedida al medio es:
Q −600
Q 839.2
∆S1 = 1 =
= −2.06 cal/K·s
∆S2 = 2 =
= 2.72 cal/K·s
T1
T2
291
308
La producción totalde entropía por unidad de tiempo es:
∆S = ∆S1 + ∆S2 = 0.66 cal/K·s


En un calorímetro adiabático se mezclan 100.0 g de mercurio a 100.0 ºC con 50.0 g de
hielo a 0.0 ºC. Determinar el incremento de entropía del mercurio, del agua, y del universo
sabiendo que ambos líquidos son perfectamente inmiscibles.
Datos: Calor específico de mercurio ce,Hg = 0.033 cal·g –1·K –1.
Calor específico del agua c1= 1.00 cal·g –1·K –1.
Calor latente de fusión del hielo Lfus = 80.0 cal· g –1.
Solución: Antes de empezar, verificaremos o descartaremos que la temperatura de
equilibrio no sea de 0 ºC (=273 K) dado que el calor latente de fusión del hielo es bastante
más elevado que el calor específico del mercurio. El calor necesario para fundir todo el
hielo y para cambiar 100 grados la temperatura del...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Capitulo3
  • capitulo3
  • Capitulo3
  • capitulo3
  • Capitulo3
  • Capitulo3
  • capitulo3
  • capitulo3

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS