ciclo de krebs
El metabolismo comprende una serie de transformaciones químicas y procesos energéticos que ocurren en el ser vivo. Para que sucedan cada una de esas transformaciones se necesitan enzimas que originen sustancias que sean a su vez productos de otras reacciones. El conjunto de reacciones químicas y enzimáticas se denomina ruta o vía metabólica. El metabolismo se divide en:
Elcatabolismo es el metabolismo de degradación de sustancias con liberación de energía.
El anabolismo es el metabolismo de construcción de sustancias complejas con necesidad de energía en el proceso.
En las rutas metabólicas se necesitan numerosas y específicas moléculas que van conformando los pasos y productos intermedios de las rutas. Pero, además, son necesarios varios tipos de moléculasindispensables para su desarrollo final:
1. Metabolitos (moléculas que ingresan en la ruta para su degradación o para participar en la síntesis de otras sustancias más complejas),
2. Nucleótidos (moléculas que permiten la oxidación y reducción de los metabolitos),
3. Moléculas energéticas (ATP y GTP o la Coenzima A que, al almacenar o desprender fosfato de sus moléculas, liberan o almacenan energía),
4.Moléculas ambientales (oxígeno, agua, dióxido de carbono, etc. que se encuentran al comienzo o final de algún proceso metabólico).
REACCIONES DEL CICLO DE KREBS
El ciclo de Krebs tiene lugar en la matriz mitocondrial en eucariota
El acetil-CoA (Acetil Coenzima A) es el principal precursor del ciclo. El ácido cítrico (6 carbonos) o citrato se regenera en cada ciclo por condensación de unacetil-CoA (2 carbonos) con una molécula de oxaloacetato (4 carbonos). El citrato produce en cada ciclo una molécula de oxaloacetato y dos CO2, por lo que el balance neto del ciclo es:
Los dos carbonos del Acetil-CoA son oxidados a CO2, y la energía que estaba acumulada es liberada en forma de energía química: GTP y poder reductor (electrones de alto potencial): NADH y FADH2. NADH y FADH2 soncoenzimas (moléculas que se unen a enzimas) capaces de acumular la energía en forma de poder reductor para su conversión en energía química en la fosforilación oxidativa.
El FADH2 de la succinato deshidrogenasa, al no poder desprenderse de la enzima, debe oxidarse nuevamente in situ. El FADH2 cede sus dos hidrógenos a la ubiquinona (coenzima Q), que se reduce a ubiquinol (QH2) y abandona la enzima.ETAPAS DEL CICLO DE KREBS
Reacción 1: Citrato sintasa (De oxalacetato a citrato)
El sitio activo de la enzima, activa el acetil-CoA para hacerlo afín a un centro carbonoso del oxalacetato. Como consecuencia de la unión entre las dos moléculas, el grupo tioéster (CoA) se hidroliza, formando así la molécula de citrato.
La reacción es sumamente exoergónica (?G'°=-31.4 kJ/mol), motivo por el cual estepaso es irreversible. El citrato producido por la enzima, además, es capaz de inhibir competitivamente la actividad de la enzima. Incluso estando la reacción muy favorecida (porque es exoergónica), la citrato sintasa puede ser perfectamente regulada. Este aspecto tiene una notable importancia biológica, puesto que permite una completa regulación del ciclo de Krebs completo, convirtiendo a laenzima en una especie de marcapasos del ciclo.
Reacción 2: Aconitasa (De citrato a isocitrato)
La aconitasa cataliza la isomerización del citrato a isocitrato, por la formación de cis-aconitato. La enzima cataliza también la reacción inversa, pero en el ciclo de Krebs tal reacción es unidireccional a causa de la ley de acción de masa: las concentraciones (en condiciones estándar) de citrato (91%),del intermediario cis-aconitato (3%) y de isocitrato (6%), empujan decididamente la reacción hacia la producción de isocitrato.
En el sitio activo de la enzima está presente un clúster hierro-azufre que, junto a algunos residuos de aminoácidos polares, liga el sustrato. En concreto, la unión al sustrato se asegura por la presencia de un resto de serina, de arginina, de histidina y de aspartato,...
Regístrate para leer el documento completo.