ciencia
La lógica matemática estudia los sistemas formales en relación con el modo en el que codifican conceptos intuitivos de objetos matemáticos como conjuntos, números, demostraciones y computación. La lógica estudia las reglas de deducción formales, las capacidades expresivas de los diferentes lenguajes formales y las propiedades metalógicas de los mismos.
En un nivel elemental,la lógica proporciona reglas y técnicas para determinar si es o no válido un argumento dado dentro de un determinado sistema formal. En un nivel avanzado, la lógica matemática se ocupa de la posibilidad de axiomatizar las teorías matemáticas, de clasificar su capacidad expresiva, y desarrollar métodos computacionales útiles en sistemas formales. La teoría de la demostración y la matemáticainversa son dos de los razonamientos más recientes de la lógica matemática abstracta. Debe señalarse que la lógica matemática se ocupa de sistemas formales que pueden no ser equivalentes en todos sus aspectos, por lo que la lógica matemática no es método de descubrir verdades del mundo físico real, sino sólo una fuente posible de modelos lógicos aplicables a teorías científicas, muy especialmente a lamatemática convencional.
La lógica matemática no se encarga por otra parte del concepto de razonamiento humano general o del proceso creativo de construcción de demostraciones matemáticas mediante argumentos rigurosos pero hechas usando lenguaje informal con algunos signos o diagramas, sino sólo de demostraciones y razonamientos que pueden ser completamente formalizados en todos sus aspectos.RESEÑA HISTORICA
Siglo XIX
Previamente ya se hicieron algunos intentos de tratar las operaciones lógicas formales de una manera simbólica por parte de algunos filósofos matemáticos como Leibniz y Lambert, pero su labor permaneció desconocida y aislada.
A partir de la segunda mitad del siglo XIX, la lógica sería revolucionada profundamente. En 1847, George Boole publicó un breve tratado titulado Elanálisis matemático de la lógica, y en 1854 otro más importante titulado Las leyes del pensamiento. La idea de Boole fue construir a la lógica como un cálculo en el que los valores de verdad se representan mediante el 0 (falsedad) y el 1 (verdad), y a los que se les aplican operaciones matemáticas como la suma y la multiplicación.
Al mismo tiempo, Augustus De Morgan publica en 1847 su obra Lógicaformal, donde introduce las leyes de De Morgan e intenta generalizar la noción de silogismo. Otro importante contribuyente inglés fue John Venn, quien en 1881 publicó su libro Lógica Simbólica, donde introdujo los famosos diagramas de Venn.
Charles Sanders Peirce y Ernst Schröder también hicieron importantes contribuciones.
Sin embargo, la verdadera revolución de la lógica vino de la manode Gottlob Frege, quien frecuentemente es considerado como el lógico más importante de la historia, junto con Aristóteles. En su trabajo de 1879, la Conceptografía, Frege ofrece por primera vez un sistema completo de lógica de predicados. También desarrolla la idea de un lenguaje formal y define la noción de prueba. Estas ideas constituyeron una base teórica fundamental para el desarrollo delas computadoras y las ciencias de la computación, entre otras cosas. Pese a esto, los contemporáneos de Frege pasaron por alto sus contribuciones, probablemente a causa de la complicada notación que desarrolló el autor. En 1893 y 1903, Frege publica en dos volúmenes Las leyes de la aritmética, donde intenta deducir toda la matemática a partir de la lógica, en lo que se conoce como el proyecto logicista. Susistema, sin embargo, contenía una contradicción (la paradoja de Russell).
Lógica matemática fue el nombre dado por Giuseppe Peano para esta disciplina. En esencia, es la lógica de Aristóteles, pero desde el punto de vista de una nueva notación, más abstracta, tomada del álgebra.
Siglo XX
El siglo XX sería uno de enormes desarrollos en lógica. A partir del siglo XX, la lógica pasó a...
Regístrate para leer el documento completo.