Cinematica
P.- Un motociclista viaja por una carretera recta a una velocidad constante de . Determinar la distancia que recorre en 5 minutos.
1º. Se pasan las unidades al Sistema Internacional.
y
Sustituyendo datos
P.-Una persona recorre 100 m en 50 s a una velocidad constante, cual es su velocidad?
b).- En donde esta a los 38 s .
Dondesustituyendo en la ec. 1
despejando
Como recorridos en este tiempo.
c).- Cuanto recorre en 8 seg.
P.- Un tren experimenta un MRU avanzando con una rapidez de 3. Si tarda en atravesar completamente un túnel de de longitud. Determine la longitud del tren.
Solucion 1º. Se pasa todo al SI
3
Como la ,
sustituyendo en la ec.
sustituyendo datos ydespejando.
P.- una particula se encuentra en en la posición y en en la posición . Si el movimiento es un MRU (velocidad constante, Halle su desplazamiento en y
Solución:
como se trata del MRU y sustituyendo datos
. Este resultado es el cálculo del desplazamiento en forma vectorial entre y
P.- Un camión recorre una distancia de en un tiempomientras desacelera
Uniformemente hasta alcanzae una velocidad final de .
Encontrar: a).- La velocidad inicial , b).- aceleración a=?
Considerando que la posición inicial
Solucion:
D e la cuatro ecuaciones obtenidas y de acuerdo a los datos proporcionados observamos que la ecuación (4) es la que podemos utilizar porque estamos considerando que la posición inicial
P.-En el instante una particula se encuentra a de un observador, la partícula se mueve con velocidad constante de durante e inmediatamente frena uniformemente hasta llegar al reposo despues. Suponiendo la dirección del movimiento sobre el eje X positivo calcular:
a).- La aceleración dela prticula durante el frenado.
b).- El deplazamiento total de la particula.
c).- La posición dela particula en el instante en que se detiene.
d).- La velcidad de la particula a los
e).- La rapidez media de laprticula, durante los
f).- La aceleración media durante los
Solucion
La posición que mide el observador durante es:
x
Cuando la particula recorre los hasta ahí su velocidad sigue siendo constante de
, por decir hasta el punto (1). Después pasan y sedetiene en el punto donde su que seria el punto (2). Esto implica que el movimiento que hay del punto (1) al punto (2) SERA UN MOVIMIENTO UNIFORMEMENTE VARIADO, y de los datos que se tienen podemos aplicar la sig. ecuación.
a).- La aceleración dela prticula durante el frenado.
Como conocemos la en el punto 2 y el
El signo (-) indica que mientrasla particula va viajando con una velocidad que va en el sentido de x(+) su aceleración va disminuyendo y su dirección será en sentido de x(-) como se indica en la figura. Es decir va frenando hasta que se detiene .
b).- El desplazamiento total de la partícula.
Se entiende como el cambio de la posición final será:
Como no conocemos además no conocemos la distancia del punto (1) alpunto (2) esto implica
como porque se detuvo en el punto 2
Despejando:
La posición final de la particula:
y posicion inicial del observador es
(distancia total recorrida).
c).- Cuanto vale la posición cuando la partícula se detuvo, como el desplzamiento es independiente del observador pero la posición la mide el observador hasta que laparticula se detiene su .
Es decir:
Esta posición obtenida es con respecto del punto donde esta el observador hasta el punto (2)
Analizando la posición
por tanto
Después cuanto vale su velocidad a los
Entonces hasta el punto (1) su velocidad es aplicando la sig. ec.
. Solo consideramos en el tiempo en el movimiento variado y se obtiene:
que es el tiempo en el...
Regístrate para leer el documento completo.