Circulo Trigonometrico Y Sus Funciones Trigonometricas
Se toma como base un círculo de radio r = 1 con centro o, en el origen en el plano cartesiano. Se considera un [ángulo] arbitrario medido a partir del eje xpositivo y en sentido positivo; o sea, en sentido contrario a las manecillas del reloj; todo ángulo puede ser colocado (y de una sola manera) de forma tal que su vértice coincida con el origen decoordenada , uno de sus lados (llamado lado inicial) coincide con la semirrecta OA y el otro lado (llamado lado terminal) quede ubicado ( a partir del inicial) en la zona de barrida en sentido contrario a lamanecilla del reloj.
Para 90-α
Si a partir del eje vertical OB trazamos la recta r a un ángulo α en el sentido horario, la recta r forma con el eje x un ángulo 90-α, el valor de las funcionestrigonométricas de este ángulo conocidas las de α serán:
El triángulo OEF rectángulo en E, siendo el ángulo en F α, por lo tanto:
en el mismo triángulo OEF, tenemos que:
viendo el triánguloOAG, rectángulo en A, siendo el ángulo en G igual a α, podemos ver:
Para 180-α
Si sobre el eje horizontal OC, trazamos la recta r a un ángulo α, el ángulo entre el eje OA y la recta r es de 180-α,dado el triángulo OEF rectángulo en E y cuyo ángulo en O es α, tenemos:
en el mismo triángulo OEF:
En el triángulo OAG, rectángulo en A y con ángulo en O igual a α, tenemos:
Final del...
Regístrate para leer el documento completo.