Circunferencia Con Centro
A continuación analizaremos cuatro casos
Caso 1
Veamos la gráfica siguiente:
Los datos que nos entrega son:
Centro: C (0, 0), el centro se ubica en el origen de las coordenadas x e y
radio: r = 3, lo indica el 3 en cada una de las coordenadas.
Recordar esto:
Cuando el centro (C) de lacircunferencia sea (0, 0) se usará la ecuación x2 + y2 = r2 para expresar dicha circunferencia en forma analítica (Geometría analítica). Esta ecuación se conoce como ecuación reducida.
Para la gráfica de nuestro ejemplo, reemplazamos el valor de r en la fórmula x2 + y2 = 32
y nos queda x2 + y2 = 9 como la ecuación reducida de la circunferencia graficada arriba.
Circunferencia con centro (C) en el origen delas coordenadas; expresado como C (0, 0)
Los datos que nos entrega son:
Centro: C (0, 0), el centro se ubica en el origen de las coordenadas x e y
radio: r, lo desconocemos, pero tenemos un dato: el punto P (3, 4) ubicado en la circunferencia.
Recordemos de nuevo:
Cuando el centro (C) de la circunferencia sea (0, 0) se usará la ecuación x2 + y2 = r2 para expresar dicha circunferencia enforma analítica. Esta ecuación se conoce como ecuación reducida.
Para la gráfica de nuestro ejemplo, deberíamos colocar el valor de r en la fórmula x2 + y2 = r2 , pero resulta que no lo conocemos.
Entonces, a partir del dato P (3, 4) podemos calcular el valor del trazo que une este punto con el centro C (0, 0) (trazo PC con línea punteada en la figura), el cual corresponde al radio de lacircunferencia dada.
¿Cómo calculamos el valor de la distancia (d) entre P y C (el radio de la circunferencia)?
Para calcular la distancia (d) entre dos puntos (encontrar su valor) contamos con la siguiente fórmula:
No olvidemos que esta fórmula es para encontrar o conocer la distancia entre dos puntos; por lo mismo, debemos saber que en ella
(x2 ─ x1)2 representa al punto 1, y ese punto 1 (P1) loharemos corresponder con el punto que pasa por el centro C (0, 0)
(y2 ─ y1)2 representa al punto 2, y ese punto 2 (P2) lo haremos corresponder con el punto que pasa por P (3, 4).
Es muy importante conocer o designar este orden ya que
Tenemos la gráfica de una circunferencia cuyo centro (C) es el origen de las coordenadas (0, 0), y nos dan dos puntos opuestos en la circunferencia, , A (-3,-2) y B (3, 2), los cuales unidos corresponden al diámetro de la misma.
Recordemos de nuevo:
Cuando el centro (C) de la circunferencia sea (0, 0) se usará la ecuación x2 + y2 = r2 para expresar dicha circunferencia en forma analítica. Esta ecuación se conoce como ecuación reducida.
Para la gráfica de nuestro ejemplo, deberíamos colocar el valor de r en la fórmula x2 + y2 = r2 , pero resultaque no lo conocemos.
Pero tenemos identificados dos puntos opuestos en la circunferencia, los cuales unidos entre sí (la línea punteada entre A y B en la gráfica) representan al diámetro de la misma. Entonces, a partir de esos puntos, A (-3, -2) y B (3,
2-La circunferencia se define como la serie de puntos infinitos que satisfacen una condicion dada ( que en realidad es una ecuacion) y queequidistan ( tienen la misma distancia ) de un punto fijo llamado centro.
Los elemento que la definen son el centro y el radio. Si te preguntas porque la definen es porque todas las circunferencias tienen que poseer estos elementos si no, no estariamos hablando de una circunferencia.
Rectas en la circunferencia
Radio: Es un segmento que une el centro de la circunferencia con cualquier punto deella.
El radio se nombra con la letra “r” o bien con sus puntos extremos.
La medida del radio es constante.
Cuerda: es el segmento que une dos puntos de la circunferencia. Las cuerdas tienen distintas medidas.
Diámetro: Es la cuerda que pasa por el centro de la circunferencia.
El diámetro es la cuerda de mayor medida.
El diámetro se nombra con la letra “d”.
El diámetro siempre es el...
Regístrate para leer el documento completo.