Conjuntos

Páginas: 10 (2362 palabras) Publicado: 24 de septiembre de 2014
Teoría de Conjuntos.
La teoría de conjuntos es una rama de las matemáticas que estudia las propiedades de los conjuntos: Colecciones abstractas de objetos, consideradas como objetos en sí mismas. Los conjuntos y sus operaciones más elementales son una herramienta básica en la formulación de cualquier teoría matemática. Sin embargo, la teoría de los conjuntos es lo suficientemente rica como paraconstruir el resto de objetos y estructuras de interés en matemáticas: números, funciones, figuras geométricas, y junto con la lógica permite estudiar los fundamentos de esta. En la actualidad se acepta que el conjunto de axiomas de la teoría de Zermelo-Fraenkel es suficiente para desarrollar toda la matemática.
Además, la propia teoría de conjuntos es objeto de estudio per se, no sólo comoherramienta auxiliar, en particular las propiedades y relaciones de los conjuntos infinitos. En esta disciplina es habitual que se presenten casos de propiedades indemostrables o contradictorias, como la hipótesis del continuo o la existencia de un cardinal inaccesible. Por esta razón, sus razonamientos y técnicas se apoyan en gran medida en la lógica matemática.
El desarrollo histórico de la teoríade conjuntos se atribuye a Georg Cantor, que comenzó a investigar cuestiones conjuntistas «puras» del infinito en la segunda mitad del siglo XIX, precedido por algunas ideas de Bernhard Bolzano e influenciado por Richard Dedekind. El descubrimiento de las paradojas de la teoría cantoriana, de conjuntos, formalizada por Gottlob Frege, propició los trabajos de Bertrand Russell, Ernst Zermelo,Abraham Fraenkel y otros a principios del siglo XX.
Conjunto.
En matemáticas, un conjunto es una agrupación de objetos considerada como un objeto en sí. Los objetos del conjunto pueden ser cualquier cosa: personas, números, colores, letras, figuras, etc. Cada uno de los objetos en la colección es un elemento o miembro del conjunto.1 Por ejemplo, el conjunto de los colores del arcoíris es:
AI = {Rojo,Naranja, Amarillo, Verde, Azul, Añil, Violeta}
Un conjunto suele definirse mediante una propiedad que todos sus elementos poseen. Por ejemplo, para los números naturales, si se considera la propiedad de ser un número primo, el conjunto de los números primos es:
P = {2, 3, 5, 7, 11, 13,...}
Un conjunto queda definido únicamente por sus miembros y por nada más. En particular, un conjunto puedeescribirse como una lista de elementos, pero cambiar el orden de dicha lista o añadir elementos repetidos no define un conjunto nuevo. Por ejemplo:
S = {Lunes, Martes, Miércoles, Jueves, Viernes} = {Martes, Viernes, Jueves, Lunes, Miércoles}
AI = {Rojo, Naranja, Amarillo, Verde, Azul, Añil, Violeta} = {Amarillo, Naranja, Rojo, Verde, Violeta, Añil, Azul}
Los conjuntos pueden ser finitos oinfinitos. El conjunto de los números naturales es infinito, pero el conjunto de los planetas en el Sistema Solar es finito (tiene ocho elementos). Además, los conjuntos pueden combinarse mediante operaciones, de manera similar a las operaciones con números.
Un conjunto es una colección bien definida de objetos, entendiendo que dichos objetos pueden ser cualquier cosa: números, personas, letras, otrosconjuntos, etc.
Elemento de un conjunto.
En teoría de conjuntos, un elemento o miembro de un conjunto (o familia de conjuntos) es un objeto atómico que forma parte de ese conjunto (o familia).
Al escribir estamos diciendo que los elementos del conjunto A son los números 1, 2, 3 y 4. Un grupo de elementos de A sería, por ejemplo, el cual es un subconjunto de A.
Los elementos pueden serconjuntos en sí mismos. Por ejemplo, consideremos el conjunto Los elementos de B no son 1, 2, 3, y 4; en efecto, B tiene sólo tres elementos: 1, 2 y el conjunto
Los elementos de un conjunto pueden ser cualquier cosa. Por ejemplo:
Es el conjunto cuyos elementos son los colores rojo, verde y azul.
Tipos de conjuntos.
Conjuntos Finitos: Un conjunto finito A es aquel que tiene un número finito de...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • conjuntos
  • conjuntos
  • Conjuntos
  • conjuntos
  • Conjuntos
  • CONJUNTOS
  • CONJUNTOS
  • conjuntos

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS