Contabilidad

Páginas: 8 (1953 palabras) Publicado: 8 de septiembre de 2011
Ocupa un lugar igualmente importante tanto en la historia de la filosofía como en la de las matemáticas. Inventó el cálculo infinitesimal, independientemente de Newton, y su notación es la que se emplea desde entonces. También inventó el sistema binario, fundamento de virtualmente todas las arquitecturas de las computadoras actuales. Fue uno de los primeros intelectuales europeos que reconocieronel valor y la importancia del pensamiento chino y de la China como potencia desde todos los puntos de vista.
Junto con René Descartes y Baruch Spinoza, es uno de los tres grandes racionalistas del siglo XVII. Su filosofía se enlaza también con la tradición escolástica y anticipa la lógica moderna y la filosofía analítica. Leibniz hizo asimismo contribuciones a la tecnología y anticipó nocionesque aparecieron mucho más tarde en biología, medicina, geología, teoría de la probabilidad, psicología, ingeniería y ciencias de la información. Sus contribuciones a esta vasta lista de temas está desperdigada en diarios y en decenas de miles de cartas y manuscritos no publicados. Hasta el momento, no se ha realizado una edición completa de sus escritos, y por ello no es posible aún hacer unrecuento integral de sus logros.
0.1 Números reales
Los números reales son los números que se puede escribir con anotación decimal, incluyendo aquellos que necesitan una expansión decimal infinita. El conjunto de los números reales contiene todos los números enteros, positivos y negativos; todos los fracciones; y todos los números irracionales -- aquellos cuyos desarrollos en decimales nunca serepiten. Ejemplos de números irracionales son
√2 = 1.4142135623730951 . . .     π = 3.141592653589793 . . .     e = 2.718281828459045 . . .
Es muy útil representar a los números reales como puntos en la recta real, como mostrado aquí.

Observe que los números más mayores aparecen a la derecha: Si a < b entonces el punto corresponde a b estrá a la derecha del punto que corresponde a a.Intervalos
Ciertos subconjuntos del conjunto de los números reales, llamados intervalos, se encunetra frecuentemente, por lo que tenemos una notación compacta para representarlos.
Notación de intervalo La siguiente es una lista de varios tipos de intervalos con ejemplos. | Intervalo | Descripción | Dibujo | Ejemplo |
| | | | |
Cerrado | [a, b] | Conjunto de números x tales que
a ≤ x ≤ b|
(incluye puntos extremos) | [0, 10] |
Abierto | (a, b) | Conjunto de números x tales que
a < x < b |
(excluye puntos extremos) | (-1, 5) |
Semiabierto | (a, b] | Conjunto de números x tales que
a < x ≤ b | | (-3, 1] |
| [a, b) | Conjunto de números x tales que
a ≤ x < b | | [-4, -1) |
Infinito | [a, +∞) | Conjunto de números x tales que
a ≤ x | | [0, +∞) || (a, +∞) | Conjunto de números x tales que
a < x | | (-3, +∞) |
| (-∞, b] | Conjunto de números x tales que
x ≤ b | | (-∞, 0] |
| (-∞, b) | Conjunto de números x tales que
x < b | | (-∞, 8) |
| (-∞, +∞) | Conjunto de todos números reales | | (-∞, +∞) |
Los puntos a y b del intervalo cerrado [a, b] se llaman sus puntos extremos. Intervalos abiertos no tienen pntosextremos, y cada intervalo semiabierto tiene un solo punto extremo; por ejemplo (-1, 3] tiene 3 como su punto extremo. |

PRECURSORES
  
Entre los personajes que contribuyeron a los primeros fundamentos físicos y matemáticos del astigmatismo, antes de su reconocimiento explícito como entidad nosológica y el análisis posterior de sus aspectos teóricos y prácticos, hay que mencionar a variosbrillantes científicos que desarrollaron su actividad a lo largo de los siglos XVII y XVIII. Básicamente el grupo está constituido por notables personajes que realizaron construcciones gráficas en relación a la intercepción tangencial o sagital de rayos incidentes oblicuos sobre una superficie refractiva esférica y que describieron los centros relativos de las secciones sagitales.
El jesuita belga...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Contabilidad
  • Contabilidad
  • Contabilidad
  • Contabilidad
  • Contabilidad
  • Contabilidad
  • Contabilidad
  • Contabilidad

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS