Contabilidad
Aceptamos el significado de general como la parábola cuyo vértice no está situado en el origen de coordenadas.
Supongamos que el vértice de una parábola cuando su eje focal es paralelo al eje Y se halla situado en el punto (h,k).
En este caso tendremos que trasladar el vértice al nuevo punto quedándonos establecida la fórmula:
Hacemosoperaciones:
Damos valores a:
Sustituyendo estos valores en (I) obtenemos la ecuación general de la parábola:
Cuando su eje focal es paralelo al eje X se halla situado en el punto (h, k) la fórmula es:
26.42 Una parábola tiene su foco en el punto F(5,0) y su vértice en V(1,0). ¿Cuál es su ecuación? Dibuja la parábola.
Respuesta:
Solución
El valor de
El punto (h, k) corresponde a (1, 0)La ecuación es:
-------------------------------------------------
Parábola (matemática)
Para otros usos de este término, véase parábola.
Secciones cónicas.
La trayectoria de una pelota que rebota es una sucesión de parábolas.
En matemática, la parábola (del griego παραβολή) es la sección cónica resultante de cortar un cono recto con un plano paralelo a sugeneratriz.nota 1 Se definetambién como el lugar geométrico de los puntos de un plano que equidistan de una recta llamadadirectriz,nota 2 y un punto exterior a ella llamado foco. En geometría proyectiva, la parábola se define como la curva envolvente de las rectas que unen pares de puntos homólogos en una proyectividad semejante o semejanza.
La parábola aparece en muchas ramas de las ciencias aplicadas debido a que su formase corresponde con las gráficas de lasecuaciones cuadráticas. Por ejemplo, son parábolas las trayectorias ideales de los cuerpos que se mueven bajo la influencia exclusiva de la gravedad (ver movimiento parabólico y trayectoria balística).
-------------------------------------------------
Propiedades geométricas
Diferentes elementos de una parábola.
Diagrama que muestra la propiedadreflexiva, la directriz (verde), y las líneas que unen el foco y la directriz de la parábola (azul).
Aunque la definición original de la parábola es la relativa a la sección de un cono recto por un plano paralelo a su directriz, actualmente es más común definir la parábola como un lugar geométrico:
Una parábola es el lugar geométrico de los puntos de un plano equidistantes a una recta dada,llamada directriz, y a un punto exterior a ella, que se denomina foco. |
De esta forma, una vez fija una recta y un punto se puede construir una parábola que los tenga por foco y directriz de acuerdo a la siguiente construcción. Sea T un punto cualquiera de la recta directriz. Se une con el foco dado F y a continuación se traza la mediatriz(o perpendicular por el punto medio) del segmento TF. Laintersección de la mediatriz con la perpendicular por T a la directriz da como resultado un punto P que pertenece a la parábola. Repitiendo el proceso para diferentes puntos T se puede aproximar tantos puntos de la parábola como sea necesario.
De la construcción anterior se puede probar que la parábola es simétrica respecto a la línea perpendicular a la directriz y que pasa por el foco. Al punto deintersección de la parábola con tal línea (conocida como eje de la parábola) se le conoce como vértice de la parábola y es el punto cuya distancia a la directriz es mínima. La distancia entre el vértice y el foco se conoce como distancia focal o radio focal.
Los puntos de la parábola están a la misma distancia del foco F y de la recta directriz. | | Construcción de puntos en una parábola. |[editar]Lado recto
El lado recto mide 4 veces la distancia focal
Al segmento de recta comprendido por la parábola, que pasa por el foco y es paralelo a la directriz, se le conoce como lado recto.
La longitud del lado recto es siempre 4 veces la distancia focal. |
Siendo D, E los extremos del lado recto y T, U las respectivas proyecciones sobre la directriz, denotando por W la proyección del...
Regístrate para leer el documento completo.