Control digital
TABLA 2,1
TABLA DE TRANSFORMADAS X(s)
~(I)
z
0
«leT)
x(k)
d
X(z)
I.
-
-
Ddl1 de "r"'\1'~~"iS,ll) I. k-O 0, k t< I)
I I
:
I
I
2.
!
5
M." - kJ
I
O.
" = ~ " t< k
!
I
I
3.
1(')
I(k)
1
~
I
~
-I5
+
, ...
f
••
r
U
1 - t .• T Z-I
5,
r
I -.
~)
I'
leT
TI- '
(I - :")'
.
\,~
"-
6
5
2 ,.
(leT)'
T':"(I + r~) (1 _ :"),1 T':"(l +4z'" + I")
7
6 -; s a 5(5'+ 0)
b - a • (s +a)(5+ bl
I (5 + u)'
5
,"
I - c '"'
(kT).1
(I - z")'
r
(I - e,·T)z" (I - (")(I - e,·T:.')
S
.
1-
l!- ••
9.
(-COl _
(-,.,
t~·'T
_ r- A• T
(e·· r - e''')z''
(I - e·· r :")(1 - e ., I")
Tt-·TZ- 1
10.
Ie''''
kTe''' T
(I - e'·T z ")' I - (I + oTle'·T I"
II.
(5 + a)'
(I - ol)e'"
(l-okTle"'f
(l-e'·T z ")'
1
TABLA 2-2
TEOREMASY PROPIEDAOES 'MPORTANTES DE LA TRANSFORMADA z
X(I)
0
x(k)
:: [x(t)J
0
Z[x(k)!
1.
2. 3. 4. 5.
ax (I) ax,(I) + bx,(t) X(I +
aX(.) aX,(,) ... bX,(z) ,X(,) - ulU) .' X(z) - z' x(O) - zx(T) .'X(z) - z'x(O) - all) z' X(z) - " x(O) - z'
n
or
x(k + 1)
X(I + 2T)
x(k + 2)
T)
6.
X(I + kT) X(I - kT)
x(n f- k) x(n - k)
- .
x(T) - ... - a(kT
7.8.
, • X(z) " XCI) - 1'.1(0) - '·-'.l(l) - ... - u(k - 1) , • X(.)
d -TZ-X(l)
9.
10.
CX(I)
u(k)
dz
11.
12.
13.
d -z-X(z) dz
e-" X(I) e -0' x(k)
a'x(k) ka'x(k)
X(ze") X(ze
O )
14.
15.
x(~)
-z~X(~) d;: a
limX(z) sldlim,leeX'SIC
,-~
16.
x(U)
x(ce)
,-I
17.
18.
Vx(k) dx(k)
lim [(1 - z·')X(z)j If (1 - z ·')X(z) cs analillca sobre
y fuera delcirculo unHario
19.
20. 21.
= x(k) - x(k - 1) = x(k + 1) - x(k)
'-0
(1 - Z·')X(I) (z - I)X(z) - z.r(O)
I I -
I
.t(k)
,-I X(z)
- x(e, 0) aa
k~x(k)
a
-X(z,a) aa
a
22.
23. 24.
'-0
~
I
.
x(kT)y(nT kT)
(-z~rX(Z)
X(z)Y(z) X(I)
'-0
2: x(~)
-
-'
Laplace Transform
F(s)
Time Function f(t), t> 0
b(t)
z-Transform
F(z)
Modifiedz-Transform
F(z. m)
o
~
e- tTs
b(t - kT)
l
z-t-I+",
s
S2
U'(l)
;:
z
z-1
Tz
(z-
W
+
I
--+-
z
mT
T 1)2
I
(z _ 1)2
2
S3
t2
tt-I
T 2 z(z
I)
(z _ 1)3
T
2 m2 z2
+ (2m
- 2m 2
+ l)z + (m e -a"'T) . z e a1
(z _ 1)3
(k - I)!
~
lim ( _ I)" a-O
I __ [ Z ] nat-I z _ e- aT
o-tz
lim ( _ 1)t a-O
I __at-I (
oak - I
1
e- at
z
te-a' tke-ar
e-a",T e- aT a1· + m(z _ e- aT )] Te-a",T[e(z - e- aT )2
s+a
(.~
e- aT
z
Tze- aT
(z e- aT )2
+ all
+ a)k
a
(k - I)!
(s
(-I) oat
kat[ z _ ze- aT ]
z(1 :.- e- aT)
(_I)k_
oak.z_e- aT
Uk [ e-a",T ] .
s(s
+ 0)
I -e -al
(I - e-a",T)z
+ (e-a,"T
_ e- aT )
(2 -
I)(z _ raT)
(z -l}(z
e -07)
3
\
Laplace Transform F(s)
Time Function f(t), t > 0
z-Transforrn F(z)
Modified z-Transform F(z, m)
(s
+ aXs + b)
a S2(S
-
1
_1 (e_
(b - a)
O'
_
e- b ')
1 [ - .... T 1 [z z ] gT z_e- bT (b-a) (b-a) z-e
z~e-OT-z~e-bT
amT - 1 e-o",T
-b",T ]
+ ~)
1
I
1 t - (1a
-J
e-o~
Tz (z - 1)2
-
(1 - e-°T)z
--h
(s+ a)2
a
te-
O
'
:
a(z - 1Xz - e-°1) Tze- oT (z_e-· T)2 (aT 2)T:
Z
---+
(z - 1)2
T
a(z - 1) a(z - e-°1)
Te-o..T[e- oT + m(z - e- oT )]
(z - e- oT )2
- T
+---
S3(S
+ a)
~(t2_~t+~2 _2. e - o') 2
T 2;:
(z
2
a
a
a
W+
2 T2 ___ + T (m + l)a 2
2a(z - 1)2
Z
(z -
1)3
2
a(z - 1)2
1)
+ a2(z - 1) -a- _ e - oT) 2(:...
Regístrate para leer el documento completo.