Cuadratura De Gauss
La Cuadratura Gaussiana selecciona los puntos de la evaluación de manera óptima y no en una forma espaciada. Se escogen los nodos X1, X2,… Xn en el intervalo [ a, b ] y los coeficientes C1, C2,. . . , Cn para reducir en lo posible el error esperado que se obtiene al efectuar la aproximación
[pic]
Para resolver cualquier problema por mediode la cuadratura de Gauss, primero tenemos que cambiar los limites de integración a [ -1, 1 ] mediante la siguiente formula:
Z = 2x – (a+b)
2a
Posteriormente tenemos que efectuar un cambio de variable a la función para que quede en términos de “Z” mediante la siguiente formula:
f(x) = f( (b-a)Z + (a+b))
2. 2 2
Luego tenemos que cambiarnuestra “dx” a una “dz”, para que todos nuestros términos estén en función de “Z”.
dx = b-a dz
2
Por ultimo determinamos el numero de puntos en que queremos dividir nuestro intervalo, mientras mas puntos tomemos mejor será nuestra aproximación.
|No. de Puntos |Coeficientes Wi |Raices Zi |
|2 |W1 =W2 = 1.0 |-Z1 = Z2 = 0.5773502 |
|3 |W2 = 0.88888 |Z2 = 0.0 |
| |W1= W3 = 0.55555 |-Z1 = Z3 = 0.7745966 |
|4 |W2 = W3 = 0.6521451549 |-Z2 = Z3 = 0.33998104|
| |W1 = W4 = 0.3478548451 |-Z1 = Z4 = 0.861136311 |
|5 |W3 = 0.56888888 |Z3 = 0.0 |
| |W2 = W4 = 0.4786286705 |-Z2 = Z4 = 0.53846931 |
| |W1 = W5 =0.2369268850 |-Z1 = Z5 = 0.90617984 |
= (7 ln |7| - 7) - (3 ln |3| - 3) = 6.6213 - 0.2958
= 6.32546
x = 3 = z = 2(3) - (3+7) = 6 - 10 = -4 = -1
7 - 3 4 4
x = 7 = Z = 2(7) - (3+7) = 14 - 10 = 4 = 1
7 - 3 4 4
ln |x| = f( 7-3 z + 3+7 ) = f( 4 z + 10 ) = 2Z + 5 =ln |2z + 5|
2 2 2 2
dx = 7-3 dz = 4 dz = 2z
2 2
| |
Usando Gauss para 5 puntos:
||
= w1 * f(z1) + w2 * f(z2) + w3 * f(z3) + w4 * f(z4) + w5 * f(z5)
Aplicando el método
| |
= 2 (0.2369268850 * [ln|2(-0.9061798459) + 5|]
+ 0.4786286705 * [ln |2(-0.5384693101) + 5|]
+ 0.5688888889 * [ln |2(0) + 5|]
+ 0.4786286705 * [ln |2(0.5384693101) + 5|]
+ 0.2369268850 * [ln |2(0.09061798459) + 5|] =
=2(0.274664819+ 0.654224278 + 0.915591345 + 0.863685939 +0.390263182)
= 2(3.098429563) = 6.196859127
CUADRATURA DE GAUSS
Gauss investigo y encontró que es factible disminuir el error en la integración cambiando la localización de los puntos sobre la curva de integración f(x). El investigador desarrollo su propio método conocido como...
Regístrate para leer el documento completo.