Curva Cicloide
Reseña histórica de la curva cicloide
La cicloide fue estudiada primero por Nicolás de Cusa (1401-1464) en 1450 cuando intentaba encontrar el área de un círculo por integración. En 1501 Charles Bouvelles se interesó por ella pensando que podría ser útil para cuadrar el círculo. También fue estudiada posteriormente por Galileo Galilei (1564-1642) y por Marin Mersenne(1588-1648). Galileo fue quien la nombró como Cicloide en 1599 el trato de demostrar que la curva cicloide es tres veces a la circunferencia que la genera.
La curva cicloide fue considerada por muchos años como una curva especial tanto por sus fascinantes propiedades como por los conocimientos científicos que género en el siglo XVII.
Tipos de curva cicloide
1. Cicloide alargada: Si P estáafuera de la circunferencia generatriz (B>A)
2. Cicloide acortada: Si P se encuentra dentro de circunferencia generatriz (B<A)
3. Cicloide común: Si P pertenece a la circunferencia generatriz (B=A)
Mersenne se propuso encontrar el área encerrada bajo la curva mediante integración. Al no conseguirlo, en 1615 propuso la cuestión a otros matemáticos. Entre ellos a Gilles PersonnedeRoberval (1602-1675) quien, en 1634 ganó la Cátedra de Matemáticas del College Royal gracias a este estudio Orgulloso de su resultado, Roberval comunicó el resultado a Descartes (1596-1650) quien dijo que “era una belleza de la que no me había dado cuenta antes, aunque causaría no poca dificultad a cualquier geómetra algo experimentado”.
Roberval no fue el único que buscó el valor del áreaencerrada por la cicloide. En 1639, Galileo, después de 40 años de estudio de la curva, escribió a Evangelista Torricelli (1608-1647). Galileo, al no encontrar una relación matemática entre el área encerrada por la cicloide en la primera vuelta del círculo y el área de éste, acudió a pesar pedazos de metal cortados en forma de cicloide. Encontró que la proporción era aproximadamente 3 a 1 pero, al noobtener un número mayor que 3, supuso que dicha relación era irracional. Torricelli, en cambio, sí logró obtener la expresión exacta del área de la cicloide. En 1658, Blaise Pascal (1623-1662) se unió al estudio de la cicloide, Pascal había estado desde noviembre de 1654 dedicado exclusivamente a la teología, abandonando la ciencia. Pero una noche de 1658, debido a un fuerte dolor de muelas que leimpedía dormir, decidió dedicarse al estudio de la cicloide. Parece ser que fue en los ocho días siguientes cuando resolvió el problema del área y el centro de gravedad de cualquier segmento de la cicloide. El dolor desapareció y Pascal, interpretando dicho suceso como una señal divina, siguió con el estudio de la curva durante varios años. Pascal resolvió, además de los ya citados, otrosproblemas relacionados con el volumen y la superficie del sólido de revolución obtenido al girar la cicloide sobre el eje.
Aplicación de la vida cicloide en la vida cotidiana:
La primera vez que fue usada fue en los dientes de engranaje la cual los uso Gerard de Desargues en (1630), el cual utilizaba la curva cicloide en los dientes de engranaje para su mejor funcionamiento, también lo utilizoen el PÉNDULO ISÓCRONO que es utilizado para comprobar la propiedad tautócrona en un espacio, también lo utilizan para el diseño de TOBOGANES y en la INDUSTRIA AERONÁUTICA para la salida de tendencia de los aviones ya que posee una curva armónica.
P
P
P
P
P
P
R
R
P
P
P
P
En este plano podemos observar la trayectoria de ese punto P a lo largo de su desplazamiento. Así amedida que la circunferencia se va desplazando, el punto P va describiendo su trayectoria, hasta formar de esta manera lo que llamamos una CURVA CICLOIDE.
Podemos considerar la Cicloide como la curva que genera un punto P de una circunferencia cuando ésta rueda, sin deslizamiento, sobre una recta.
A partir de esta definición, es sencillo obtenerlas ecuaciones paramétricas de la cicloide...
Regístrate para leer el documento completo.